These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23223986)

  • 21. Using optical tweezers for the characterization of polyelectrolyte solutions with very low viscoelasticity.
    Pommella A; Preziosi V; Caserta S; Cooper JM; Guido S; Tassieri M
    Langmuir; 2013 Jul; 29(29):9224-30. PubMed ID: 23786307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity.
    Lázaro GR; Hernández-Machado A; Pagonabarraga I
    Soft Matter; 2014 Oct; 10(37):7195-206. PubMed ID: 25105872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rheology of blood cells as soft tissues.
    Skalak R; Chien S
    Biorheology; 1982; 19(3):453-61. PubMed ID: 7104483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping.
    Bambardekar K; Dharmadhikari AK; Dharmadhikari JA; Mathur D; Sharma S
    J Biomed Opt; 2008; 13(6):064021. PubMed ID: 19123667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating viscoelastic properties and membrane electrical charges of red blood cells with optical tweezers and cationic quantum dots - applications to β-thalassemia intermedia hemoglobinopathy.
    Lima CN; Moura DS; Silva YSS; Souza TH; Crisafuli FAP; Silva DCN; Peres JC; Cesar CL; de Araujo RE; Fontes A
    Colloids Surf B Biointerfaces; 2020 Feb; 186():110671. PubMed ID: 31816460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Viscoelastic properties of the oxygenated sickle erythrocyte membrane.
    Drasler WJ; Smith CM; Keller KH
    Biorheology; 1989; 26(5):935-49. PubMed ID: 2620090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relevance of interfacial viscoelasticity in stability and conformation of biomolecular organizates at air/fluid interface.
    Antony M S; Jaganathan M; Dhathathreyan A
    Adv Colloid Interface Sci; 2016 Aug; 234():80-88. PubMed ID: 27174489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tangent simple systems method applied to a precise study of viscoelastic behaviour of human blood.
    Khodabandehlou T; Lelievre JC; Joly M
    Biorheology; 1987; 24(5):441-9. PubMed ID: 3128343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linear microrheology with optical tweezers of living cells 'is not an option'!
    Tassieri M
    Soft Matter; 2015 Aug; 11(29):5792-8. PubMed ID: 26100967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions.
    Fusco S; Borzacchiello A; Miccio L; Pesce G; Rusciano G; Sasso A; Netti PA
    Biorheology; 2007; 44(5-6):403-18. PubMed ID: 18401078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active rheology of phospholipid vesicles.
    Brown AT; Kotar J; Cicuta P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021930. PubMed ID: 21929041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orientational dynamics of human red blood cells in an optical trap.
    Parthasarathi P; Nagesh BV; Lakkegowda Y; Iyengar SS; Ananthamurthy S; Bhattacharya S
    J Biomed Opt; 2013 Feb; 18(2):25001. PubMed ID: 23381225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using blinking optical tweezers to study cell rheology during initial cell-particle contact.
    Berghoff K; Gross W; Eisentraut M; Kress H
    Biophys J; 2021 Aug; 120(16):3527-3537. PubMed ID: 34181902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of cytoskeletal drugs on actin cortex elasticity.
    Ayala YA; Pontes B; Hissa B; Monteiro AC; Farina M; Moura-Neto V; Viana NB; Nussenzveig HM
    Exp Cell Res; 2017 Feb; 351(2):173-181. PubMed ID: 28034672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous manipulation and detection of living cell membrane dynamics.
    Gögler M; Betz T; Käs JA
    Opt Lett; 2007 Jul; 32(13):1893-5. PubMed ID: 17603605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions.
    Lanotte L; Mauer J; Mendez S; Fedosov DA; Fromental JM; Claveria V; Nicoud F; Gompper G; Abkarian M
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13289-13294. PubMed ID: 27834220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rheology of red blood cells under flow in highly confined microchannels. II. Effect of focusing and confinement.
    Lázaro GR; Hernández-Machado A; Pagonabarraga I
    Soft Matter; 2014 Oct; 10(37):7207-17. PubMed ID: 25068313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Normal and system lupus erythematosus red blood cell interactions studied by double trap optical tweezers: direct measurements of aggregation forces.
    Khokhlova MD; Lyubin EV; Zhdanov AG; Rykova SY; Sokolova IA; Fedyanin AA
    J Biomed Opt; 2012 Feb; 17(2):025001. PubMed ID: 22463027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The effect of abnormal cell shape on the spectral distinguishing of erythrocytes using laser tweezers Raman spectroscopy].
    Wang GW; Peng LX; Yao HL; Huang SS; Chen P; Li YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2117-21. PubMed ID: 19839321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of shear rate and suspending medium viscosity on elongation of red cells tank-treading in shear flow.
    Fischer TM; Korzeniewski R
    Cytometry A; 2011 Nov; 79(11):946-51. PubMed ID: 22015732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.