BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23223989)

  • 1. Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomography: a pilot study.
    He R; Wei H; Gu H; Zhu Z; Zhang Y; Guo X; Cai T
    J Biomed Opt; 2012 Oct; 17(10):101513. PubMed ID: 23223989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive blood glucose monitoring during oral intake of different sugars with optical coherence tomography in human subjects.
    Zhang Y; Wei H; Yang H; He Y; Wu G; Xie S; Zhu Z; He R
    J Biophotonics; 2013 Sep; 6(9):699-707. PubMed ID: 23225583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical coherence tomography monitoring of enhanced skin optical clearing in rats in vivo.
    Genina EA; Bashkatov AN; Kolesnikova EA; Basko MV; Terentyuk GS; Tuchin VV
    J Biomed Opt; 2014 Feb; 19(2):21109. PubMed ID: 24105426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects.
    Larin KV; Eledrisi MS; Motamedi M; Esenaliev RO
    Diabetes Care; 2002 Dec; 25(12):2263-7. PubMed ID: 12453971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography.
    Sapozhnikova VV; Prough D; Kuranov RV; Cicenaite I; Esenaliev RO
    Exp Biol Med (Maywood); 2006 Sep; 231(8):1323-32. PubMed ID: 16946401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo comparison of the optical clearing efficacy of optical clearing agents in human skin by quantifying permeability using optical coherence tomography.
    Guo X; Guo Z; Wei H; Yang H; He Y; Xie S; Wu G; Deng X; Zhao Q; Li L
    Photochem Photobiol; 2011; 87(3):734-40. PubMed ID: 21388381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe.
    Sapozhnikova VV; Kuranov RV; Cicenaite I; Esenaliev RO; Prough DS
    J Biomed Opt; 2008; 13(2):021112. PubMed ID: 18465961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional correlation (2D) method for improving the accuracy of OCT-based noninvasive blood glucose concentration (BGC) monitoring.
    Su Y; Liu H; Wang H; Chen L; Yang G; Xin H; Yao XS
    Lasers Med Sci; 2021 Oct; 36(8):1649-1659. PubMed ID: 33523391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography.
    Zhong H; Guo Z; Wei H; Zeng C; Xiong H; He Y; Liu S
    J Biomed Opt; 2010; 15(3):036012. PubMed ID: 20615014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical coherence tomography-based continuous noninvasive glucose monitoring in patients with diabetes.
    Gabbay RA; Sivarajah S
    Diabetes Technol Ther; 2008 Jun; 10(3):188-93. PubMed ID: 18473692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography.
    Yu H; Lee P; Jo Y; Lee K; Tuchin VV; Jeong Y; Park Y
    J Biomed Opt; 2016 Dec; 21(12):121510. PubMed ID: 27792807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro studies toward noninvasive glucose monitoring with optical coherence tomography.
    Kinnunen M; Myllylä R; Jokela T; Vainio S
    Appl Opt; 2006 Apr; 45(10):2251-60. PubMed ID: 16607992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of glucose permeability in monkey skin in vivo using Optical Coherence Tomography.
    Ghosn MG; Sudheendran N; Wendt M; Glasser A; Tuchin VV; Larin KV
    J Biophotonics; 2010 Jan; 3(1-2):25-33. PubMed ID: 19824024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of ultrasound and glucose synergy effect on the optical clearing and light penetration for human colon tissue using SD-OCT.
    Zhao Q; Wei H; He Y; Ren Q; Zhou C
    J Biophotonics; 2014 Nov; 7(11-12):938-47. PubMed ID: 24458608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using sandpaper for noninvasive transepidermal optical skin clearing agent delivery.
    Stumpp O; Chen B; Welch AJ
    J Biomed Opt; 2006; 11(4):041118. PubMed ID: 16965146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study.
    Larin KV; Motamedi M; Ashitkov TV; Esenaliev RO
    Phys Med Biol; 2003 May; 48(10):1371-90. PubMed ID: 12812453
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Zaytsev SM; Amouroux M; Tuchin VV; Genina EA; Blondel W
    J Biomed Opt; 2023 May; 28(5):055002. PubMed ID: 37250859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skin optical clearing potential of disaccharides.
    Feng W; Shi R; Ma N; Tuchina DK; Tuchin VV; Zhu D
    J Biomed Opt; 2016 Aug; 21(8):081207. PubMed ID: 27108771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of structural orientation of enamel and dentine on light attenuation and local refractive index: an optical coherence tomography study.
    Hariri I; Sadr A; Shimada Y; Tagami J; Sumi Y
    J Dent; 2012 May; 40(5):387-96. PubMed ID: 22342164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography.
    Kuranov RV; Sapozhnikova VV; Prough DS; Cicenaite I; Esenaliev RO
    Phys Med Biol; 2006 Aug; 51(16):3885-900. PubMed ID: 16885613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.