BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23224016)

  • 1. Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy.
    Leh B; Siebert R; Hamzeh H; Menard L; Duval MA; Charon Y; Abi Haidar D
    J Biomed Opt; 2012 Oct; 17(10):108001. PubMed ID: 23224016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and standardization of tissue-simulating protoporphyrin IX optical phantoms.
    Marois M; Bravo J; Davis SC; Kanick SC
    J Biomed Opt; 2016 Mar; 21(3):35003. PubMed ID: 26968385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation.
    Zhu C; Liu Q; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):237-47. PubMed ID: 12683849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance.
    Kolste KK; Kanick SC; Valdés PA; Jermyn M; Wilson BC; Roberts DW; Paulsen KD; Leblond F
    J Biomed Opt; 2015 Feb; 20(2):26002. PubMed ID: 25652704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroscopic-imaging technique for subsurface quantification of near-infrared markers during surgery.
    Jermyn M; Kolste K; Pichette J; Sheehy G; Angulo-Rodríguez L; Paulsen KD; Roberts DW; Wilson BC; Petrecca K; Leblond F
    J Biomed Opt; 2015 Mar; 20(3):036014. PubMed ID: 25793562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy.
    Wagnières G; Cheng S; Zellweger M; Utke N; Braichotte D; Ballini JP; van den Bergh H
    Phys Med Biol; 1997 Jul; 42(7):1415-26. PubMed ID: 9253049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques.
    Sevick-Muraca EM; Lopez G; Reynolds JS; Troy TL; Hutchinson CL
    Photochem Photobiol; 1997 Jul; 66(1):55-64. PubMed ID: 9230705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis.
    Boutet J; Herve L; Debourdeau M; Guyon L; Peltie P; Dinten JM; Saroul L; Duboeuf F; Vray D
    J Biomed Opt; 2009; 14(6):064001. PubMed ID: 20059239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperspectral fluorescence lifetime imaging for optical biopsy.
    Nie Z; An R; Hayward JE; Farrell TJ; Fang Q
    J Biomed Opt; 2013 Sep; 18(9):096001. PubMed ID: 24002188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence.
    Diamond KR; Farrell TJ; Patterson MS
    Phys Med Biol; 2003 Dec; 48(24):4135-49. PubMed ID: 14727757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of layered tissue optical properties from spatial frequency-domain spectroscopy and a deterministic radiative transport solver.
    Horan ST; Gardner AR; Saager R; Durkin AJ; Venugopalan V
    J Biomed Opt; 2018 Nov; 24(7):1-11. PubMed ID: 30456934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and application of heterogeneous printed mouse phantoms for whole animal optical imaging.
    Bentz BZ; Chavan AV; Lin D; Tsai EH; Webb KJ
    Appl Opt; 2016 Jan; 55(2):280-7. PubMed ID: 26835763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and Characterization of Optical Tissue Phantoms Containing Macrostructure.
    Durkee MS; Nash LD; Nooshabadi F; Cirillo JD; Maitland DJ; Maitland KC
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water in Biomolecular Fluorescence Spectroscopy and Imaging: Side Effects and Remedies.
    Fürstenberg A
    Chimia (Aarau); 2017 Feb; 71(1-2):26-31. PubMed ID: 28259192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Intralipid-10% in fluorescence distortion studies on liquid-tissue phantoms in UV range.
    Suresh Anand BS; Sujatha N
    J Biophotonics; 2011 Jan; 4(1-2):92-7. PubMed ID: 20414902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms.
    Palmer GM; Ramanujam N
    Appl Opt; 2006 Feb; 45(5):1062-71. PubMed ID: 16512550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed tissue-simulating phantoms for near-infrared fluorescence imaging of rheumatoid diseases.
    Schädel-Ebner S; Hirsch O; Gladytz T; Gutkelch D; Licha K; Berger J; Grosenick D
    J Biomed Opt; 2022 Jun; 27(7):. PubMed ID: 35711096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micron resolution, high-fidelity three-dimensional vascular optical imaging phantoms.
    Little CD; Poduval RK; Caulfield R; Noimark S; Colchester RJ; Loder CD; Tiwari MK; Rakhit RD; Papakonstantinou I; Desjardins AE
    J Biomed Opt; 2019 Feb; 24(2):1-4. PubMed ID: 30770678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of optical properties quantification with a dual-step technique for biological tissue analysis.
    Sorgato V; Berger M; Emain C; Vever-Bizet C; Dinten JM; Bourg-Heckly G; Planat-Chrétien A
    J Biomed Opt; 2018 Sep; 23(9):1-14. PubMed ID: 30232845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.