These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23224080)

  • 1. Systems-level characterization and engineering of oxidative stress tolerance in Escherichia coli under anaerobic conditions.
    Kang A; Tan MH; Ling H; Chang MW
    Mol Biosyst; 2013 Feb; 9(2):285-95. PubMed ID: 23224080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments.
    Iuchi S; Weiner L
    J Biochem; 1996 Dec; 120(6):1055-63. PubMed ID: 9010748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses.
    Levanon SS; San KY; Bennett GN
    Biotechnol Bioeng; 2005 Mar; 89(5):556-64. PubMed ID: 15669087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli.
    Perrenoud A; Sauer U
    J Bacteriol; 2005 May; 187(9):3171-9. PubMed ID: 15838044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli.
    Giel JL; Rodionov D; Liu M; Blattner FR; Kiley PJ
    Mol Microbiol; 2006 May; 60(4):1058-75. PubMed ID: 16677314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic regulation analysis of wild-type and arcA mutant Escherichia coli under nitrate conditions using different levels of omics data.
    Toya Y; Nakahigashi K; Tomita M; Shimizu K
    Mol Biosyst; 2012 Oct; 8(10):2593-604. PubMed ID: 22790675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent roles of RpoS in Escherichia coli under aerobic and anaerobic conditions.
    King T; Ferenci T
    FEMS Microbiol Lett; 2005 Mar; 244(2):323-7. PubMed ID: 15766785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system.
    Lara AR; Leal L; Flores N; Gosset G; Bolívar F; Ramírez OT
    Biotechnol Bioeng; 2006 Feb; 93(2):372-85. PubMed ID: 16187334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus.
    Hagi T; Kobayashi M; Nomura M
    FEMS Microbiol Lett; 2014 Jan; 350(2):223-30. PubMed ID: 24325446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady state analysis of the genetic regulatory network incorporating underlying molecular mechanisms for anaerobic metabolism in Escherichia coli.
    Srinivasan S; Venkatesh KV
    Mol Biosyst; 2014 Mar; 10(3):562-75. PubMed ID: 24402032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic regulation of an fnr gene knockout Escherichia coli under oxygen limitation.
    Marzan LW; Siddiquee KA; Shimizu K
    Bioeng Bugs; 2011; 2(6):331-7. PubMed ID: 22008943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate.
    Lin H; Bennett GN; San KY
    Biotechnol Bioeng; 2005 Jan; 89(2):148-56. PubMed ID: 15543598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and reconstitution of genetic regulatory networks for improved microbial tolerance to isooctane.
    Kang A; Chang MW
    Mol Biosyst; 2012 Apr; 8(4):1350-8. PubMed ID: 22328008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic regulation by an atypical Arc system in Shewanella oneidensis.
    Gralnick JA; Brown CT; Newman DK
    Mol Microbiol; 2005 Jun; 56(5):1347-57. PubMed ID: 15882425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of anaerobic and stationary phase growth conditions on the heat shock and oxidative stress responses in Escherichia coli K-12.
    Díaz-Acosta A; Sandoval ML; Delgado-Olivares L; Membrillo-Hernández J
    Arch Microbiol; 2006 Jun; 185(6):429-38. PubMed ID: 16775749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Escherichia coli for L-malate production anaerobically.
    Jiang Y; Zheng T; Ye X; Xin F; Zhang W; Dong W; Ma J; Jiang M
    Microb Cell Fact; 2020 Aug; 19(1):165. PubMed ID: 32811486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fnr, a global transcriptional regulator of Escherichia coli, activates the Vitreoscilla hemoglobin (VHb) promoter and intracellular VHb expression increases cytochrome d promoter activity.
    Tsai PS; Kallio PT; Bailey JE
    Biotechnol Prog; 1995; 11(3):288-93. PubMed ID: 7619398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions.
    Shalel-Levanon S; San KY; Bennett GN
    Biotechnol Bioeng; 2005 Oct; 92(2):147-59. PubMed ID: 15988767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli.
    Berríos-Rivera SJ; San KY; Bennett GN
    Metab Eng; 2002 Jul; 4(3):238-47. PubMed ID: 12616693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.