BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 23224174)

  • 1. Criteria for pathology recognition in optical coherence tomography of fallopian tubes.
    Kirillin M; Panteleeva O; Yunusova E; Donchenko E; Shakhova N
    J Biomed Opt; 2012 Aug; 17(8):081413-1. PubMed ID: 23224174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Optical introscopy is a new diagnostic technique in reproductive medicine].
    Panteleeva OG; Shakhov BE; Iunusova KÉ; Kirillin MIu; Shakhova NM
    Vestn Rentgenol Radiol; 2012; (4):50-5. PubMed ID: 23214030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametric imaging of cancer with optical coherence tomography.
    McLaughlin RA; Scolaro L; Robbins P; Saunders C; Jacques SL; Sampson DD
    J Biomed Opt; 2010; 15(4):046029. PubMed ID: 20799831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelet analysis enables system-independent texture analysis of optical coherence tomography images.
    Lingley-Papadopoulos CA; Loew MH; Zara JM
    J Biomed Opt; 2009; 14(4):044010. PubMed ID: 19725722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Vessel Shade-Robust Segmentation of Retinal Layers in OCT Images.
    González-López A; Ortega M; Penedo MG; Charlón P
    Stud Health Technol Inform; 2014; 207():47-54. PubMed ID: 25488210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis.
    Lingley-Papadopoulos CA; Loew MH; Manyak MJ; Zara JM
    J Biomed Opt; 2008; 13(2):024003. PubMed ID: 18465966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms.
    Liu B; Harman M; Brezinski ME
    J Opt Soc Am A Opt Image Sci Vis; 2005 Feb; 22(2):262-71. PubMed ID: 15717555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational methods for analysis of human breast tumor tissue in optical coherence tomography images.
    Zysk AM; Boppart SA
    J Biomed Opt; 2006; 11(5):054015. PubMed ID: 17092164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch.
    Pande P; Shrestha S; Park J; Serafino MJ; Gimenez-Conti I; Brandon J; Cheng YS; Applegate BE; Jo JA
    J Biomed Opt; 2014 Aug; 19(8):086022. PubMed ID: 25162909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis.
    Cheng Y; Larin KV
    Appl Opt; 2006 Dec; 45(36):9238-45. PubMed ID: 17151765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for optical coherence tomography image classification using local features and earth mover's distance.
    Sun Y; Lei M
    J Biomed Opt; 2009; 14(5):054037. PubMed ID: 19895138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
    Lee S; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT).
    Li Q; Onozato ML; Andrews PM; Chen CW; Paek A; Naphas R; Yuan S; Jiang J; Cable A; Chen Y
    Opt Express; 2009 Aug; 17(18):16000-16. PubMed ID: 19724599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis.
    Kafieh R; Rabbani H; Hajizadeh F; Ommani M
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2815-23. PubMed ID: 23722446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speckle reduction in optical coherence tomography by image registration and matrix completion.
    Cheng J; Duan L; Wong DW; Tao D; Akiba M; Liu J
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):162-9. PubMed ID: 25333114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion artefact correction in retinal optical coherence tomography using local symmetry.
    Montuoro A; Wu J; Waldstein S; Gerendas B; Langs G; Simader C; Schmidt-Erfurth U
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):130-7. PubMed ID: 25485371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Detection of the Uterus and Fallopian Tube Junctions in Laparoscopic Images.
    Prokopetc K; Collins T; Bartoli A
    Inf Process Med Imaging; 2015; 24():552-63. PubMed ID: 26221702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between optical coherence tomography images and histology of pigskin.
    Kuranov R; Sapozhnikova V; Prough D; Cicenaite I; Esenaliev R
    Appl Opt; 2007 Apr; 46(10):1782-6. PubMed ID: 17356622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration--method and clinical examples.
    Jørgensen TM; Thomadsen J; Christensen U; Soliman W; Sander B
    J Biomed Opt; 2007; 12(4):041208. PubMed ID: 17867797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined image-processing algorithms for improved optical coherence tomography of prostate nerves.
    Chitchian S; Weldon TP; Fiddy MA; Fried NM
    J Biomed Opt; 2010; 15(4):046014. PubMed ID: 20799816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.