These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 23224189)
1. Synergistic effect of hyperosmotic agents and sonophoresis on breast tissue optical properties and permeability studied with spectral domain optical coherence tomography. Zhu Z; Wei H; Wu G; Yang H; He Y; Xie S J Biomed Opt; 2012 Aug; 17(8):086002. PubMed ID: 23224189 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of ultrasound and glucose synergy effect on the optical clearing and light penetration for human colon tissue using SD-OCT. Zhao Q; Wei H; He Y; Ren Q; Zhou C J Biophotonics; 2014 Nov; 7(11-12):938-47. PubMed ID: 24458608 [TBL] [Abstract][Full Text] [Related]
3. Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice. Xiong H; Guo Z; Zeng C; Wang L; He Y; Liu S J Biomed Opt; 2009; 14(2):024029. PubMed ID: 19405758 [TBL] [Abstract][Full Text] [Related]
4. Investigation of the permeability and optical clearing ability of different analytes in human normal and cancerous breast tissues by spectral domain OCT. Zhu Z; Wu G; Wei H; Yang H; He Y; Xie S; Zhao Q; Guo X J Biophotonics; 2012 Jul; 5(7):536-43. PubMed ID: 22213688 [TBL] [Abstract][Full Text] [Related]
5. Ex vivo determination of glucose permeability and optical attenuation coefficient in normal and adenomatous human colon tissues using spectral domain optical coherence tomography. Zhao Q; Zhou C; Wei H; He Y; Chai X; Ren Q J Biomed Opt; 2012 Oct; 17(10):105004. PubMed ID: 23223998 [TBL] [Abstract][Full Text] [Related]
6. Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography. Wei H; Wu G; Guo Z; Yang H; He Y; Xie S; Guo X J Biomed Opt; 2012 Nov; 17(11):116006. PubMed ID: 23117801 [TBL] [Abstract][Full Text] [Related]
7. In vivo comparison of the optical clearing efficacy of optical clearing agents in human skin by quantifying permeability using optical coherence tomography. Guo X; Guo Z; Wei H; Yang H; He Y; Xie S; Wu G; Deng X; Zhao Q; Li L Photochem Photobiol; 2011; 87(3):734-40. PubMed ID: 21388381 [TBL] [Abstract][Full Text] [Related]
8. Mapping tissue optical attenuation to identify cancer using optical coherence tomography. McLaughlin RA; Scolaro L; Robbins P; Saunders C; Jacques SL; Sampson DD Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):657-64. PubMed ID: 20426168 [TBL] [Abstract][Full Text] [Related]
9. In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography. Zhong H; Guo Z; Wei H; Zeng C; Xiong H; He Y; Liu S J Biomed Opt; 2010; 15(3):036012. PubMed ID: 20615014 [TBL] [Abstract][Full Text] [Related]
10. Dynamic optical clearing effect of tissue impregnated with hyperosmotic agents and studied with optical coherence tomography. He Y; Wang RK J Biomed Opt; 2004; 9(1):200-6. PubMed ID: 14715074 [TBL] [Abstract][Full Text] [Related]
11. Nondestructive quantification of analyte diffusion in cornea and sclera using optical coherence tomography. Ghosn MG; Tuchin VV; Larin KV Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2726-33. PubMed ID: 17525205 [TBL] [Abstract][Full Text] [Related]
12. Differential permeability rate and percent clearing of glucose in different regions in rabbit sclera. Ghosn MG; Carbajal EF; Befrui NA; Tuchin VV; Larin KV J Biomed Opt; 2008; 13(2):021110. PubMed ID: 18465959 [TBL] [Abstract][Full Text] [Related]
13. Comparing the synergistic effects of oleic acid and dimethyl sulfoxide as vehicles for optical clearing of skin tissue in vitro. Jiang J; Wang RK Phys Med Biol; 2004 Dec; 49(23):5283-94. PubMed ID: 15656277 [TBL] [Abstract][Full Text] [Related]
14. Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. van der Meer FJ; Faber DJ; Baraznji Sassoon DM; Aalders MC; Pasterkamp G; van Leeuwen TG IEEE Trans Med Imaging; 2005 Oct; 24(10):1369-76. PubMed ID: 16229422 [TBL] [Abstract][Full Text] [Related]
15. Permeability of hyperosmotic agent in normal and atherosclerotic vascular tissues. Ghosn MG; Carbajal EF; Befrui NA; Tellez A; Granada JF; Larin KV J Biomed Opt; 2008; 13(1):010505. PubMed ID: 18315350 [TBL] [Abstract][Full Text] [Related]
16. Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography. Xu C; Schmitt JM; Carlier SG; Virmani R J Biomed Opt; 2008; 13(3):034003. PubMed ID: 18601548 [TBL] [Abstract][Full Text] [Related]
17. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT. Yao X; Gan Y; Chang E; Hibshoosh H; Feldman S; Hendon C Lasers Surg Med; 2017 Mar; 49(3):258-269. PubMed ID: 28264146 [TBL] [Abstract][Full Text] [Related]
18. Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe. Sapozhnikova VV; Kuranov RV; Cicenaite I; Esenaliev RO; Prough DS J Biomed Opt; 2008; 13(2):021112. PubMed ID: 18465961 [TBL] [Abstract][Full Text] [Related]
19. Influence of nanoparticles accumulation on optical properties of human normal and cancerous liver tissue in vitro estimated by OCT. Zhou F; Wei H; Ye X; Hu K; Wu G; Yang H; He Y; Xie S; Guo Z Phys Med Biol; 2015 Feb; 60(3):1385-97. PubMed ID: 25592483 [TBL] [Abstract][Full Text] [Related]
20. Computational methods for analysis of human breast tumor tissue in optical coherence tomography images. Zysk AM; Boppart SA J Biomed Opt; 2006; 11(5):054015. PubMed ID: 17092164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]