BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 2322438)

  • 21. Effects of electromagnetic stimulation on the functional responsiveness of isolated rat osteoclasts.
    Shankar VS; Simon BJ; Bax CM; Pazianas M; Moonga BS; Adebanjo OA; Zaidi M
    J Cell Physiol; 1998 Sep; 176(3):537-44. PubMed ID: 9699506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tumor necrosis factor enhances parathyroid hormone-related protein-induced hypercalcemia and bone resorption without inhibiting bone formation in vivo.
    Uy HL; Mundy GR; Boyce BF; Story BM; Dunstan CR; Yin JJ; Roodman GD; Guise TA
    Cancer Res; 1997 Aug; 57(15):3194-9. PubMed ID: 9242449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of avian osteoclast bone resorption by monoclonal antibody 121F: a mechanism involving the osteoclast free radical system.
    Collin-Osdoby P; Li L; Rothe L; Anderson F; Kirsch D; Oursler MJ; Osdoby P
    J Bone Miner Res; 1998 Jan; 13(1):67-78. PubMed ID: 9443792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imatinib mesylate (Gleevec) enhances mature osteoclast apoptosis and suppresses osteoclast bone resorbing activity.
    El Hajj Dib I; Gallet M; Mentaverri R; Sévenet N; Brazier M; Kamel S
    Eur J Pharmacol; 2006 Dec; 551(1-3):27-33. PubMed ID: 17049513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interleukin-4 inhibits bone resorption and acutely increases cytosolic Ca2+ in murine osteoclasts.
    Bizzarri C; Shioi A; Teitelbaum SL; Ohara J; Harwalkar VA; Erdmann JM; Lacey DL; Civitelli R
    J Biol Chem; 1994 May; 269(19):13817-24. PubMed ID: 8188659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cells from human bone giant cell tumors show a [Ca2+]o-sensing.
    Teti A; Argentino L; Grano M; Colucci S; Zambonin Zallone A
    Boll Soc Ital Biol Sper; 1992 May; 68(5):301-4. PubMed ID: 1457097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Partnership between academic research and industry to study a new anti-osteoporotic drug].
    Mentaverri R; Wattel A; Lemaire-Hurtel AS; Kamel S; Blesius A; Brazier M
    Med Sci (Paris); 2005; 21(6-7):663-8. PubMed ID: 15985213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolated osteoclasts resorb the organic and inorganic components of bone.
    Blair HC; Kahn AJ; Crouch EC; Jeffrey JJ; Teitelbaum SL
    J Cell Biol; 1986 Apr; 102(4):1164-72. PubMed ID: 3457013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of calcium disposal from osteoclastic resorption hemivacuole.
    Datta HK; Horrocks BR
    J Endocrinol; 2003 Jan; 176(1):1-5. PubMed ID: 12525243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 'Calcium-activated' intracellular calcium elevation: a novel mechanism of osteoclast regulation.
    Zaidi M; Datta HK; Patchell A; Moonga B; MacIntyre I
    Biochem Biophys Res Commun; 1989 Sep; 163(3):1461-5. PubMed ID: 2783143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. "Calcium receptors" on eukaryotic cells with special reference to the osteoclast.
    Zaidi M
    Biosci Rep; 1990 Dec; 10(6):493-507. PubMed ID: 1964812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TRPV-5 mediates a receptor activator of NF-kappaB (RANK) ligand-induced increase in cytosolic Ca2+ in human osteoclasts and down-regulates bone resorption.
    Chamoux E; Bisson M; Payet MD; Roux S
    J Biol Chem; 2010 Aug; 285(33):25354-62. PubMed ID: 20547482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of high phosphate concentration on osteoclast differentiation as well as bone-resorbing activity.
    Kanatani M; Sugimoto T; Kano J; Kanzawa M; Chihara K
    J Cell Physiol; 2003 Jul; 196(1):180-9. PubMed ID: 12767054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different calcium sensitivity in osteoclasts on glass and on bone and maintenance of cytoskeletal structures on bone in the presence of high extracellular calcium.
    Lakkakorpi PT; Lehenkari PP; Rautiala TJ; Väänänen HK
    J Cell Physiol; 1996 Sep; 168(3):668-77. PubMed ID: 8816921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ion channels and transporters in osteoclasts.
    Supanchart C; Kornak U
    Arch Biochem Biophys; 2008 May; 473(2):161-5. PubMed ID: 18406337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of osteoclast mediated bone resorption--rationale for the design of new therapeutics.
    Väänänen K
    Adv Drug Deliv Rev; 2005 May; 57(7):959-71. PubMed ID: 15876398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytosolic free calcium dependent regulation of osteoclast bone resorbing activity.
    Teti A; Colucci S; Grano M; Barattolo R; Argentino L; Zambonin Zallone A
    Boll Soc Ital Biol Sper; 1990 Jan; 66(1):1-4. PubMed ID: 2322438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts: evidence for steady-state disposal and intracellular functional compartmentalization of calcium.
    Berger CE; Rathod H; Gillespie JI; Horrocks BR; Datta HK
    J Bone Miner Res; 2001 Nov; 16(11):2092-102. PubMed ID: 11697806
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.