BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 23224556)

  • 1. Developmental progression to infectivity in Trypanosoma brucei triggered by an RNA-binding protein.
    Kolev NG; Ramey-Butler K; Cross GA; Ullu E; Tschudi C
    Science; 2012 Dec; 338(6112):1352-3. PubMed ID: 23224556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell RNA sequencing of
    Vigneron A; O'Neill MB; Weiss BL; Savage AF; Campbell OC; Kamhawi S; Valenzuela JG; Aksoy S
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2613-2621. PubMed ID: 31964820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome Profiling of Trypanosoma brucei Development in the Tsetse Fly Vector Glossina morsitans.
    Savage AF; Kolev NG; Franklin JB; Vigneron A; Aksoy S; Tschudi C
    PLoS One; 2016; 11(12):e0168877. PubMed ID: 28002435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trypanosoma brucei: infectivity and immunogenicity of cultured parasites.
    Nyindo M; Wellde BT
    Exp Parasitol; 1985 Oct; 60(2):150-4. PubMed ID: 4029345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcript expression analysis of putative Trypanosoma brucei GPI-anchored surface proteins during development in the tsetse and mammalian hosts.
    Savage AF; Cerqueira GC; Regmi S; Wu Y; El Sayed NM; Aksoy S
    PLoS Negl Trop Dis; 2012; 6(6):e1708. PubMed ID: 22724039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The establishment of variant surface glycoprotein monoallelic expression revealed by single-cell RNA-seq of Trypanosoma brucei in the tsetse fly salivary glands.
    Hutchinson S; Foulon S; Crouzols A; Menafra R; Rotureau B; Griffiths AD; Bastin P
    PLoS Pathog; 2021 Sep; 17(9):e1009904. PubMed ID: 34543350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antigenic variation during the developmental cycle of Trypanosoma brucei.
    Hajduk SL
    J Protozool; 1984 Feb; 31(1):41-7. PubMed ID: 6204043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tsetse fly tolerance to T. brucei infection: transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland.
    Matetovici I; Caljon G; Van Den Abbeele J
    BMC Genomics; 2016 Nov; 17(1):971. PubMed ID: 27884110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclical transmission of in vitro cultivated bloodstream forms and procyclic trypomastigotes of trypanosoma brucei brucei by Glossina morsitans morsitans.
    Schöni R; Jenni L; Brun R
    Z Parasitenkd; 1982; 68(1):1-5. PubMed ID: 6182705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Inhibition of Bromodomain Proteins in Insect-Stage African Trypanosomes Perturbs Silencing of the Variant Surface Glycoprotein Repertoire and Results in Widespread Changes in the Transcriptome.
    Ashby EC; Havens JL; Rollosson LM; Hardin J; Schulz D
    Microbiol Spectr; 2023 Jun; 11(3):e0014723. PubMed ID: 37097159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene co-expression network analysis of Trypanosoma brucei in tsetse fly vector.
    Mwangi KW; Macharia RW; Bargul JL
    Parasit Vectors; 2021 Jan; 14(1):74. PubMed ID: 33482903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ALBA proteins are stage regulated during trypanosome development in the tsetse fly and participate in differentiation.
    Subota I; Rotureau B; Blisnick T; Ngwabyt S; Durand-Dubief M; Engstler M; Bastin P
    Mol Biol Cell; 2011 Nov; 22(22):4205-19. PubMed ID: 21965287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infectivity reacquisition by Trypanosoma brucei brucei cultivated with tsetse salivary glands.
    Cunningham I; Honigberg BM
    Science; 1977 Sep; 197(4310):1279-82. PubMed ID: 897667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental changes and metabolic reprogramming during establishment of infection and progression of Trypanosoma brucei brucei through its insect host.
    Naguleswaran A; Fernandes P; Bevkal S; Rehmann R; Nicholson P; Roditi I
    PLoS Negl Trop Dis; 2021 Sep; 15(9):e0009504. PubMed ID: 34543277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of procyclin mRNAs during cyclical transmission of Trypanosoma brucei.
    Urwyler S; Vassella E; Van Den Abbeele J; Renggli CK; Blundell P; Barry JD; Roditi I
    PLoS Pathog; 2005 Nov; 1(3):e22. PubMed ID: 16276404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclical transmission of Trypanosoma brucei rhodesiense and Trypanosoma congolense by tsetse flies infected with culture-form procyclic trypanosomes.
    Evans DA
    J Protozool; 1979 Aug; 26(3):425-7. PubMed ID: 536930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TelAP1 links telomere complexes with developmental expression site silencing in African trypanosomes.
    Reis H; Schwebs M; Dietz S; Janzen CJ; Butter F
    Nucleic Acids Res; 2018 Apr; 46(6):2820-2833. PubMed ID: 29385523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trypanosoma brucei: in vitro propagation of metacyclic forms derived from the salivary glands of Glossina morsitans.
    Nyindo M; Patel N; Darji N; Golder TK
    J Parasitol; 1979 Oct; 65(5):751-5. PubMed ID: 512767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies.
    Ooi CP; Rotureau B; Gribaldo S; Georgikou C; Julkowska D; Blisnick T; Perrot S; Subota I; Bastin P
    PLoS One; 2015; 10(7):e0133676. PubMed ID: 26218532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of positive and negative regulators in the stepwise developmental progression towards infectivity in Trypanosoma brucei.
    Toh JY; Nkouawa A; Sánchez SR; Shi H; Kolev NG; Tschudi C
    Sci Rep; 2021 Mar; 11(1):5755. PubMed ID: 33707699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.