BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23225099)

  • 1. Dynamic buffering of mitochondrial Ca2+ during Ca2+ uptake and Na+-induced Ca2+ release.
    Blomeyer CA; Bazil JN; Stowe DF; Pradhan RK; Dash RK; Camara AK
    J Bioenerg Biomembr; 2013 Jun; 45(3):189-202. PubMed ID: 23225099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of cardiac mitochondrial Na+-Ca2+ exchanger kinetics with a biophysical model of mitochondrial Ca2+ handling suggests a 3:1 stoichiometry.
    Dash RK; Beard DA
    J Physiol; 2008 Jul; 586(13):3267-85. PubMed ID: 18467367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extra-matrix Mg2+ limits Ca2+ uptake and modulates Ca2+ uptake-independent respiration and redox state in cardiac isolated mitochondria.
    Boelens AD; Pradhan RK; Blomeyer CA; Camara AK; Dash RK; Stowe DF
    J Bioenerg Biomembr; 2013 Jun; 45(3):203-18. PubMed ID: 23456198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the calcium sequestration system in isolated guinea pig cardiac mitochondria.
    Bazil JN; Blomeyer CA; Pradhan RK; Camara AK; Dash RK
    J Bioenerg Biomembr; 2013 Jun; 45(3):177-88. PubMed ID: 23180139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial Ca2+ influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine A.
    Wei AC; Liu T; Cortassa S; Winslow RL; O'Rourke B
    Biochim Biophys Acta; 2011 Jul; 1813(7):1373-81. PubMed ID: 21362444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Effect of Phosphate Transport on Mitochondrial Ca2+ Dynamics.
    Wei AC; Liu T; O'Rourke B
    J Biol Chem; 2015 Jun; 290(26):16088-98. PubMed ID: 25963147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and Pathophysiological Roles of Mitochondrial Na
    Takeuchi A; Matsuoka S
    Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sodium-calcium antiport of heart mitochondria is not electroneutral.
    Jung DW; Baysal K; Brierley GP
    J Biol Chem; 1995 Jan; 270(2):672-8. PubMed ID: 7822294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial free [Ca2+] increases during ATP/ADP antiport and ADP phosphorylation: exploration of mechanisms.
    Haumann J; Dash RK; Stowe DF; Boelens AD; Beard DA; Camara AK
    Biophys J; 2010 Aug; 99(4):997-1006. PubMed ID: 20712982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of matrix-free Ca2+ in cardiac mitochondria: two components of Ca2+ uptake and role of phosphate buffering.
    Wei AC; Liu T; Winslow RL; O'Rourke B
    J Gen Physiol; 2012 Jun; 139(6):465-78. PubMed ID: 22641641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for the mitochondrial Na(+)-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria.
    Cox DA; Matlib MA
    J Biol Chem; 1993 Jan; 268(2):938-47. PubMed ID: 8419373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA-induced calcium loads recycle across the mitochondrial inner membrane of hippocampal neurons in culture.
    Wang GJ; Thayer SA
    J Neurophysiol; 2002 Feb; 87(2):740-9. PubMed ID: 11826043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems.
    Bassani RA; Bassani JW; Bers DM
    J Physiol; 1994 Apr; 476(2):295-308. PubMed ID: 8046644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclosporin A Increases Mitochondrial Buffering of Calcium: An Additional Mechanism in Delaying Mitochondrial Permeability Transition Pore Opening.
    Mishra J; Davani AJ; Natarajan GK; Kwok WM; Stowe DF; Camara AKS
    Cells; 2019 Sep; 8(9):. PubMed ID: 31500337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes.
    Maack C; Cortassa S; Aon MA; Ganesan AN; Liu T; O'Rourke B
    Circ Res; 2006 Jul; 99(2):172-82. PubMed ID: 16778127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of SM-20550, a selective Na+-H+ exchange inhibitor, on the ion transport of myocardial mitochondria.
    Hotta Y; Ishikawa N; Ohashi N; Matsui K
    Mol Cell Biochem; 2001 Mar; 219(1-2):83-90. PubMed ID: 11354258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adverse bioenergetic consequences of Na+-Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes.
    Kohlhaas M; Maack C
    Circulation; 2010 Nov; 122(22):2273-80. PubMed ID: 21098439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells.
    Smets I; Caplanusi A; Despa S; Molnar Z; Radu M; VandeVen M; Ameloot M; Steels P
    Am J Physiol Renal Physiol; 2004 Apr; 286(4):F784-94. PubMed ID: 14665432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching.
    Liu T; O'Rourke B
    Circ Res; 2008 Aug; 103(3):279-88. PubMed ID: 18599868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoplasmic Na+-dependent modulation of mitochondrial Ca2+ via electrogenic mitochondrial Na+-Ca2+ exchange.
    Kim B; Matsuoka S
    J Physiol; 2008 Mar; 586(6):1683-97. PubMed ID: 18218682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.