These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23225503)

  • 21. Comparison of the X-ray structure of native rubredoxin from Pyrococcus furiosus with the NMR structure of the zinc-substituted protein.
    Blake PR; Day MW; Hsu BT; Joshua-Tor L; Park JB; Hare DR; Adams MW; Rees DC; Summers MF
    Protein Sci; 1992 Nov; 1(11):1522-5. PubMed ID: 1303770
    [TBL] [Abstract][Full Text] [Related]  

  • 22. O2 penetration and proton burial depth in proteins: applicability to fold family recognition.
    Hernández G; Teng CL; Bryant RG; LeMaster DM
    J Am Chem Soc; 2002 Apr; 124(16):4463-72. PubMed ID: 11960476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: spatial propagation of differential flexibility in rubredoxin hybrids.
    LeMaster DM; Tang J; Paredes DI; Hernández G
    Proteins; 2005 Nov; 61(3):608-16. PubMed ID: 16130131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydration in proteins observed by high-resolution neutron crystallography.
    Chatake T; Ostermann A; Kurihara K; Parak FG; Niimura N
    Proteins; 2003 Feb; 50(3):516-23. PubMed ID: 12557193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Normal mode analysis of Pyrococcus furiosus rubredoxin via nuclear resonance vibrational spectroscopy (NRVS) and resonance raman spectroscopy.
    Xiao Y; Wang H; George SJ; Smith MC; Adams MW; Jenney FE; Sturhahn W; Alp EE; Zhao J; Yoda Y; Dey A; Solomon EI; Cramer SP
    J Am Chem Soc; 2005 Oct; 127(42):14596-606. PubMed ID: 16231912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox properties of rubredoxin variants as a function of solvent composition and temperature: investigation of monopolar and dipolar interactions.
    Zheng H; Kellog SJ; Erickson AE; Dubauskie NA; Smith ET
    J Biol Inorg Chem; 2003 Jan; 8(1-2):12-8. PubMed ID: 12459894
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Observation of terahertz vibrations in Pyrococcus furiosus rubredoxin via impulsive coherent vibrational spectroscopy and nuclear resonance vibrational spectroscopy--interpretation by molecular mechanics.
    Tan ML; Bizzarri AR; Xiao Y; Cannistraro S; Ichiye T; Manzoni C; Cerullo G; Adams MW; Jenney FE; Cramer SP
    J Inorg Biochem; 2007 Mar; 101(3):375-84. PubMed ID: 17204331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The key to the extraordinary thermal stability of P. furiosus holo-rubredoxin: iron binding-guided packing of a core aromatic cluster responsible for high kinetic stability of the native structure.
    Prakash S; Sundd M; Guptasarma P
    PLoS One; 2014; 9(3):e89703. PubMed ID: 24603898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-resolution neutron protein crystallography with radically small crystal volumes: application of perdeuteration to human aldose reductase.
    Hazemann I; Dauvergne MT; Blakeley MP; Meilleur F; Haertlein M; Van Dorsselaer A; Mitschler A; Myles DA; Podjarny A
    Acta Crystallogr D Biol Crystallogr; 2005 Oct; 61(Pt 10):1413-7. PubMed ID: 16204895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A cryo-crystallographic time course for peroxide reduction by rubrerythrin from Pyrococcus furiosus.
    Dillard BD; Demick JM; Adams MW; Lanzilotta WN
    J Biol Inorg Chem; 2011 Aug; 16(6):949-59. PubMed ID: 21647777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De novo design of a redox-active minimal rubredoxin mimic.
    Nanda V; Rosenblatt MM; Osyczka A; Kono H; Getahun Z; Dutton PL; Saven JG; Degrado WF
    J Am Chem Soc; 2005 Apr; 127(16):5804-5. PubMed ID: 15839675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions.
    Yelle RB; Park NS; Ichiye T
    Proteins; 1995 Jun; 22(2):154-67. PubMed ID: 7567963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrostatic potential energy within a protein monitored by metal charge-dependent hydrogen exchange.
    Anderson JS; LeMaster DM; Hernández G
    Biophys J; 2006 Dec; 91(11):L93-5. PubMed ID: 17012322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rubredoxin from Pyrococcus furiosus.
    Jenney FE; Adams MW
    Methods Enzymol; 2001; 334():45-55. PubMed ID: 11398483
    [No Abstract]   [Full Text] [Related]  

  • 35. Redox-promoting protein motions in rubredoxin.
    Borreguero JM; He J; Meilleur F; Weiss KL; Brown CM; Myles DA; Herwig KW; Agarwal PK
    J Phys Chem B; 2011 Jul; 115(28):8925-36. PubMed ID: 21608980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein contributions to redox potentials of homologous rubredoxins: an energy minimization study.
    Swartz PD; Ichiye T
    Biophys J; 1997 Nov; 73(5):2733-41. PubMed ID: 9370467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The active site protonation states of perdeuterated Toho-1 β-lactamase determined by neutron diffraction support a role for Glu166 as the general base in acylation.
    Tomanicek SJ; Wang KK; Weiss KL; Blakeley MP; Cooper J; Chen Y; Coates L
    FEBS Lett; 2011 Jan; 585(2):364-8. PubMed ID: 21168411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correlation between hydrogen bond lengths and reduction potentials in Clostridium pasteurianum rubredoxin.
    Lin IJ; Gebel EB; Machonkin TE; Westler WM; Markley JL
    J Am Chem Soc; 2003 Feb; 125(6):1464-5. PubMed ID: 12568591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Additivity of differential conformational dynamics in hyperthermophile/mesophile rubredoxin chimeras as monitored by hydrogen exchange.
    LeMaster DM; Hernández G
    Chembiochem; 2006 Dec; 7(12):1886-9. PubMed ID: 17068837
    [No Abstract]   [Full Text] [Related]  

  • 40. Quantitative measurement of small through-hydrogen-bond and 'through-space' 1H-113Cd and 1H-199Hg J couplings in metal-substituted rubredoxin from Pyrococcus furiosus.
    Blake PR; Lee B; Summers MF; Adams MW; Park JB; Zhou ZH; Bax A
    J Biomol NMR; 1992 Sep; 2(5):527-33. PubMed ID: 1422158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.