These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23225564)

  • 1. Probing the interaction of mutiwalled carbon nanotubes and catalase: mutispectroscopic approach.
    Xu M; Sheng Z; Lu W; Dai T; Hou C
    J Biochem Mol Toxicol; 2012 Dec; 26(12):493-8. PubMed ID: 23225564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic investigations on the interaction between carbon nanotubes and catalase on molecular level.
    Guan J; Dai J; Zhao X; Liu C; Gao C; Liu R
    J Biochem Mol Toxicol; 2014 May; 28(5):211-6. PubMed ID: 24616245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.
    Zhang C; Luo S; Chen W
    Talanta; 2013 Sep; 113():142-7. PubMed ID: 23708636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies.
    Zhao X; Liu R; Chi Z; Teng Y; Qin P
    J Phys Chem B; 2010 Apr; 114(16):5625-31. PubMed ID: 20373820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein structure preservation by MWCNTs/RTIL nano-composite.
    Karimi S; Ghourchian H; Banaei A
    Int J Biol Macromol; 2013 May; 56():169-74. PubMed ID: 23415660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MWCNT interactions with protein: surface-induced changes in protein adsorption and the impact of protein corona on cellular uptake and cytotoxicity.
    Zhang T; Tang M; Yao Y; Ma Y; Pu Y
    Int J Nanomedicine; 2019; 14():993-1009. PubMed ID: 30799918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the interactions between carboxylated multi-walled carbon nanotubes and copper-zinc superoxide dismutase at a molecular level.
    Guan J; Liu G; Cai K; Gao C; Liu R
    Luminescence; 2015 Aug; 30(5):693-8. PubMed ID: 25351393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory effects of deferasirox on the structure and function of bovine liver catalase: a spectroscopic and theoretical study.
    Moradi M; Divsalar A; Saboury AA; Ghalandari B; Harifi AR
    J Biomol Struct Dyn; 2015; 33(10):2255-66. PubMed ID: 25586906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insight into the binding interaction of hydroxylated carbon nanotubes with bovine serum albumin.
    Guan Y; Zhang H; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():556-63. PubMed ID: 24508894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential toxicity of sarafloxacin to catalase: spectroscopic, ITC and molecular docking descriptions.
    Cao Z; Liu R; Yang B
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():457-63. PubMed ID: 23871971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic investigation of the interaction of the toxicant, 2-naphthylamine, with bovine serum albumin.
    Liu Y; Chen M; Bian G; Liu J; Song L
    J Biochem Mol Toxicol; 2011; 25(6):362-8. PubMed ID: 21800401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation on the interaction between isorhamnetin and bovine liver catalase by spectroscopic techniques under different pH conditions.
    Yang Y; Li D
    Luminescence; 2016 Aug; 31(5):1130-7. PubMed ID: 26748824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of polychlorinated biphenyls from aqueous solutions using beta-cyclodextrin grafted multiwalled carbon nanotubes.
    Shao D; Sheng G; Chen C; Wang X; Nagatsu M
    Chemosphere; 2010 Apr; 79(7):679-85. PubMed ID: 20350742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive studies on the nature of interaction between carboxylated multi-walled carbon nanotubes and bovine serum albumin.
    Lou K; Zhu Z; Zhang H; Wang Y; Wang X; Cao J
    Chem Biol Interact; 2016 Jan; 243():54-61. PubMed ID: 26626329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic investigation on the toxic interactions of Ni2+ with bovine hemoglobin.
    Wang L; Liu R; Chi Z; Yang B; Zhang P; Wang M
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jul; 76(2):155-60. PubMed ID: 20400367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Spectroscopic Studies on the Interaction of Human Serum Albumin and Water-Soluble Carboxyl Carbon Nanotubes].
    Wu SR; Liu Y; Liu SF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Apr; 36(4):1109-15. PubMed ID: 30052009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of AOT-assisted multi-walled carbon nanotubes on antibacterial activity.
    Bai Y; Park IS; Lee SJ; Wen PS; Bae TS; Lee MH
    Colloids Surf B Biointerfaces; 2012 Jan; 89():101-7. PubMed ID: 21958539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the binding of cerium to bovine serum albumin.
    Yuan D; Shen Z; Liu R; Chi Z; Zhu J
    J Biochem Mol Toxicol; 2011; 25(4):263-8. PubMed ID: 21308895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopy, calorimetry and molecular simulation studies on the interaction of catalase with copper ion.
    Hao F; Jing M; Zhao X; Liu R
    J Photochem Photobiol B; 2015 Feb; 143():100-6. PubMed ID: 25618814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II).
    Wang H; Zhou A; Peng F; Yu H; Yang J
    J Colloid Interface Sci; 2007 Dec; 316(2):277-83. PubMed ID: 17868683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.