BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23225645)

  • 1. Rapid immuno-SERS microscopy for tissue imaging with single-nanoparticle sensitivity.
    Salehi M; Steinigeweg D; Ströbel P; Marx A; Packeisen J; Schlücker S
    J Biophotonics; 2013 Oct; 6(10):785-92. PubMed ID: 23225645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and synthesis of Raman reporter molecules for tissue imaging by immuno-SERS microscopy.
    Schütz M; Müller CI; Salehi M; Lambert C; Schlücker S
    J Biophotonics; 2011 Jun; 4(6):453-63. PubMed ID: 21298811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immuno-surface-enhanced coherent anti-stokes Raman scattering microscopy: immunohistochemistry with target-specific metallic nanoprobes and nonlinear Raman microscopy.
    Schlücker S; Salehi M; Bergner G; Schütz M; Ströbel P; Marx A; Petersen I; Dietzek B; Popp J
    Anal Chem; 2011 Sep; 83(18):7081-5. PubMed ID: 21819074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy.
    Schütz M; Steinigeweg D; Salehi M; Kömpe K; Schlücker S
    Chem Commun (Camb); 2011 Apr; 47(14):4216-8. PubMed ID: 21359379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold and silver nanoparticle monomers are non-SERS-active: a negative experimental study with silica-encapsulated Raman-reporter-coated metal colloids.
    Zhang Y; Walkenfort B; Yoon JH; Schlücker S; Xie W
    Phys Chem Chem Phys; 2015 Sep; 17(33):21120-6. PubMed ID: 25491599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy.
    Wustholz KL; Henry AI; McMahon JM; Freeman RG; Valley N; Piotti ME; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2010 Aug; 132(31):10903-10. PubMed ID: 20681724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and sensitive SERS detection of the cytokine tumor necrosis factor alpha (tnf-α) in a magnetic bead pull-down assay with purified and highly Raman-active gold nanoparticle clusters.
    Lai Y; Schlücker S; Wang Y
    Anal Bioanal Chem; 2018 Sep; 410(23):5993-6000. PubMed ID: 29959484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging.
    Li Q; Jiang Y; Han R; Zhong X; Liu S; Li ZY; Sha Y; Xu D
    Small; 2013 Mar; 9(6):927-32. PubMed ID: 23180641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold-nanoparticle-decorated hybrid mesoflowers: an efficient surface-enhanced Raman scattering substrate for ultra-trace detection of prostate specific antigen.
    Panikkanvalappil SR; El-Sayed MA
    J Phys Chem B; 2014 Dec; 118(49):14085-91. PubMed ID: 25144402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced Raman scattering imaging using noble metal nanoparticles.
    Wilson AJ; Willets KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):180-9. PubMed ID: 23335562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles.
    Yokota Y; Ueno K; Misawa H
    Chem Commun (Camb); 2011 Mar; 47(12):3505-7. PubMed ID: 21318204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures.
    Xie W; Walkenfort B; Schlücker S
    J Am Chem Soc; 2013 Feb; 135(5):1657-60. PubMed ID: 23186150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexing with SERS labels using mixed SAMs of Raman reporter molecules.
    Gellner M; Kömpe K; Schlücker S
    Anal Bioanal Chem; 2009 Aug; 394(7):1839-44. PubMed ID: 19543719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single gold trimers and 3D superstructures exhibit a polarization-independent SERS response.
    Steinigeweg D; Schütz M; Schlücker S
    Nanoscale; 2013 Jan; 5(1):110-3. PubMed ID: 23076725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells.
    Küstner B; Gellner M; Schütz M; Schöppler F; Marx A; Ströbel P; Adam P; Schmuck C; Schlücker S
    Angew Chem Int Ed Engl; 2009; 48(11):1950-3. PubMed ID: 19191355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.
    Lee S; Chon H; Lee J; Ko J; Chung BH; Lim DW; Choo J
    Biosens Bioelectron; 2014 Jan; 51():238-43. PubMed ID: 23973735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.