BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23225692)

  • 21. Experimental and modeling study of human tympanic membrane motion in the presence of middle ear liquid.
    Zhang X; Guan X; Nakmali D; Palan V; Pineda M; Gan RZ
    J Assoc Res Otolaryngol; 2014 Dec; 15(6):867-81. PubMed ID: 25106467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional assessment of moisture influenced cadaveric tympanic membrane using phase shift-resolved optical Doppler vibrography.
    Jeon B; Lee J; Jeon D; Kim P; Jang JH; Wijesinghe RE; Jeon M; Kim J
    J Biophotonics; 2020 Feb; 13(2):e201900202. PubMed ID: 31670908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regeneration of chronic tympanic membrane perforation using 3D collagen with topical umbilical cord serum.
    Jang CH; Cho YB; Yeo M; Lee H; Min EJ; Lee BH; Kim GH
    Int J Biol Macromol; 2013 Nov; 62():232-40. PubMed ID: 24016669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical Coherence Tomography Doppler Vibrometry Measurement of Stapes Vibration in Patients With Stapes Fixation and Normal Controls.
    MacDougall D; Morrison L; Morrison C; Morris DP; Bance M; Adamson RBA
    Otol Neurotol; 2019 Apr; 40(4):e349-e355. PubMed ID: 30870352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media.
    Monroy GL; Shelton RL; Nolan RM; Nguyen CT; Novak MA; Hill MC; McCormick DT; Boppart SA
    Laryngoscope; 2015 Aug; 125(8):E276-82. PubMed ID: 25599652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interferometric measurement of the amplitude and phase of tympanic membrane vibrations in cat.
    Decraemer WF; Khanna SM; Funnell WR
    Hear Res; 1989 Mar; 38(1-2):1-17. PubMed ID: 2708151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rabbit tympanic membrane thickness distribution obtained via optical coherence tomography.
    Livens P; Dirckx JJJ
    Hear Res; 2023 Mar; 429():108701. PubMed ID: 36680871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser Doppler vibrometer (LDV)--a new clinical tool for the otologist.
    Goode RL; Ball G; Nishihara S; Nakamura K
    Am J Otol; 1996 Nov; 17(6):813-22. PubMed ID: 8915406
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography.
    Applegate BE; Shelton RL; Gao SS; Oghalai JS
    Opt Lett; 2011 Dec; 36(23):4716-8. PubMed ID: 22139294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motion of the surface of the human tympanic membrane measured with stroboscopic holography.
    Cheng JT; Aarnisalo AA; Harrington E; Hernandez-Montes Mdel S; Furlong C; Merchant SN; Rosowski JJ
    Hear Res; 2010 May; 263(1-2):66-77. PubMed ID: 20034549
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of tympanic membrane movement using film patch with integrated strain gauge, assessed by optical coherence tomography: experimental study.
    Just T; Zehlicke T; Specht O; Sass W; Punke C; Schmidt W; Lankenau E; Behrend D; Pau HW
    J Laryngol Otol; 2011 May; 125(5):467-73. PubMed ID: 21269559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Influence of liquid volume in the middle ear on tympanic membrane vibration (experimental study by holographic interferometry)].
    Okano K
    Nihon Jibiinkoka Gakkai Kaiho; 1990 Nov; 93(11):1847-55. PubMed ID: 2280306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Vivo Thickness of the Healthy Tympanic Membrane Determined by Optical Coherence Tomography.
    Morgenstern J; Kreusch T; Golde J; Steuer S; Ossmann S; Kirsten L; Walther J; Zahnert T; Koch E; Neudert M
    Otol Neurotol; 2024 Mar; 45(3):e256-e262. PubMed ID: 38361307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping the phase and amplitude of ossicular chain motion using sound-synchronous optical coherence vibrography.
    Ramier A; Cheng JT; Ravicz ME; Rosowski JJ; Yun SH
    Biomed Opt Express; 2018 Nov; 9(11):5489-5502. PubMed ID: 30460142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of increased inner ear pressure on tympanic membrane vibration.
    Jang CH; Park H; Choi CH; Cho YB; Park IY
    Int J Pediatr Otorhinolaryngol; 2009 Mar; 73(3):371-5. PubMed ID: 19117615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Situ Characterization of Micro-Vibration in Natural Latex Membrane Resembling Tympanic Membrane Functionally Using Optical Doppler Tomography.
    Seong D; Kwon J; Jeon D; Wijesinghe RE; Lee J; Ravichandran NK; Han S; Lee J; Kim P; Jeon M; Kim J
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling sound transmission of human middle ear and its clinical applications using finite element analysis.
    Chen SI; Lee MH; Yao CM; Chen PR; Chou YF; Liu TC; Song YL; Lee CF
    Kaohsiung J Med Sci; 2013 Mar; 29(3):133-9. PubMed ID: 23465416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of ossicular chain vibration at the umbo: implications for a middle ear microelectromechanical system design.
    Young DJ; Zurcher MA; Trang T; Megerian CA; Ko WH
    Ear Nose Throat J; 2010 Jan; 89(1):21-6. PubMed ID: 20155695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis.
    Cheng JT; Hamade M; Merchant SN; Rosowski JJ; Harrington E; Furlong C
    J Acoust Soc Am; 2013 Feb; 133(2):918-37. PubMed ID: 23363110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time imaging of in-vitro human middle ear using high frequency ultrasound.
    Landry TG; Rainsbury JW; Adamson RB; Bance ML; Brown JA
    Hear Res; 2015 Aug; 326():1-7. PubMed ID: 25818516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.