BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23225692)

  • 41. Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography.
    Li C; Guan G; Cheng X; Huang Z; Wang RK
    Opt Lett; 2012 Feb; 37(4):722-4. PubMed ID: 22344160
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analyses of the Tympanic Membrane Impulse Response Measured with High-Speed Holography.
    Tang H; Psota P; Rosowski JJ; Furlong C; Cheng JT
    Hear Res; 2021 Oct; 410():108335. PubMed ID: 34450569
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-dimensional laser Doppler interferometric display of human tympanic membrane vibrations at two different frequencies and sound pressure levels.
    Konrádsson KS; Ivarsson A; Harris S
    Acta Otolaryngol Suppl; 1988; 449():183-6. PubMed ID: 3201945
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical coherence tomographic measurements of the sound-induced motion of the ossicular chain in chinchillas: Additional modes of ossicular motion enhance the mechanical response of the chinchilla middle ear at higher frequencies.
    Rosowski JJ; Ramier A; Cheng JT; Yun SH
    Hear Res; 2020 Oct; 396():108056. PubMed ID: 32836020
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Laser Doppler vibrometry of the tympanic membrane. Possibilities for objective middle ear diagnosis].
    Stasche N; Foth HJ; Hörmann K
    HNO; 1993 Jan; 41(1):1-6. PubMed ID: 8449781
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the degree of rigidity of the manubrium in a finite-element model of the cat eardrum.
    Funnell WR; Khanna SM; Decraemer WF
    J Acoust Soc Am; 1992 Apr; 91(4 Pt 1):2082-90. PubMed ID: 1597600
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomechanics of the tympanic membrane.
    Volandri G; Di Puccio F; Forte P; Carmignani C
    J Biomech; 2011 Apr; 44(7):1219-36. PubMed ID: 21376326
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Mosaicking Approach for In Vivo Thickness Mapping of the Human Tympanic Membrane Using Low Coherence Interferometry.
    Pande P; Shelton RL; Monroy GL; Nolan RM; Boppart SA
    J Assoc Res Otolaryngol; 2016 Oct; 17(5):403-16. PubMed ID: 27456022
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How does prosthesis head size affect vibration transmission in ossiculoplasty?
    Bance M; Campos A; Wong L; Morris DP; van Wijhe R
    Otolaryngol Head Neck Surg; 2007 Jul; 137(1):70-3. PubMed ID: 17599568
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New data on the motion of the normal and reconstructed tympanic membrane.
    Rosowski JJ; Cheng JT; Merchant SN; Harrington E; Furlong C
    Otol Neurotol; 2011 Dec; 32(9):1559-67. PubMed ID: 21956597
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microanatomy of the tympanic membrane in chronic myringitis obtained with optical coherence tomography.
    Guder E; Lankenau E; Fleischhauer F; Schulz-Hildebrandt H; Hüttmann G; Pau HW; Just T
    Eur Arch Otorhinolaryngol; 2015 Nov; 272(11):3217-23. PubMed ID: 25384576
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Contribution to the development of the union between the manubrium of the malleus and the tympanic membrane in human fetus].
    Whyte Orozco J; González Martínez L; Cisneros Gimeno AI; Gañet Solé J; Yus Gotor C; Azúa-Romeo J; Torres del Puerto A; Sarrat Torreguitart R
    Acta Otorrinolaringol Esp; 2002 Feb; 53(2):73-8. PubMed ID: 11998531
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Imaging vibrating vocal folds with a high speed 1050 nm swept source OCT and ODT.
    Liu G; Rubinstein M; Saidi A; Qi W; Foulad A; Wong B; Chen Z
    Opt Express; 2011 Jun; 19(12):11880-9. PubMed ID: 21716421
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Measurement of the vibration of the middle ear ossicles with removed eardrum: a method for quantification of ossicular fixation.
    Peacock J; von Unge M; Dirckx J
    Med Eng Phys; 2013 Dec; 35(12):1786-92. PubMed ID: 23981439
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Effects of an increase or decrease in the middle ear pressure on tympanic membrane vibrations (experimental study by holographic interferometry)].
    Suehiro M
    Nihon Jibiinkoka Gakkai Kaiho; 1990 Mar; 93(3):398-406. PubMed ID: 2352048
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo dynamic characterization of the human tympanic membrane using pneumatic optical coherence tomography.
    Won J; Porter RG; Novak MA; Youakim J; Sum A; Barkalifa R; Aksamitiene E; Zhang A; Nolan R; Shelton R; Boppart SA
    J Biophotonics; 2021 Apr; 14(4):e202000215. PubMed ID: 33439538
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Forward and reverse transfer functions of the middle ear based on pressure and velocity DPOAEs with implications for differential hearing diagnosis.
    Dalhoff E; Turcanu D; Gummer AW
    Hear Res; 2011 Oct; 280(1-2):86-99. PubMed ID: 21624450
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Viscoelastic properties of human tympanic membrane.
    Cheng T; Dai C; Gan RZ
    Ann Biomed Eng; 2007 Feb; 35(2):305-14. PubMed ID: 17160465
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Measurement of umbo vibration in human subjects--method and possible clinical applications.
    Goode RL; Ball G; Nishihara S
    Am J Otol; 1993 May; 14(3):247-51. PubMed ID: 8372921
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tympanic membrane surface motions in forward and reverse middle ear transmissions.
    Cheng JT; Maftoon N; Guignard J; Ravicz ME; Rosowski J
    J Acoust Soc Am; 2019 Jan; 145(1):272. PubMed ID: 30710932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.