BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 23225752)

  • 1. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries.
    Wang HG; Wu Z; Meng FL; Ma DL; Huang XL; Wang LM; Zhang XB
    ChemSusChem; 2013 Jan; 6(1):56-60. PubMed ID: 23225752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM
    ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries.
    Shen L; Yuan C; Luo H; Zhang X; Yang S; Lu X
    Nanoscale; 2011 Feb; 3(2):572-4. PubMed ID: 21076732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries.
    Wang L; Zheng Y; Wang X; Chen S; Xu F; Zuo L; Wu J; Sun L; Li Z; Hou H; Song Y
    ACS Appl Mater Interfaces; 2014 May; 6(10):7117-25. PubMed ID: 24802130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries.
    Chen Y; Lu Z; Zhou L; Mai YW; Huang H
    Nanoscale; 2012 Nov; 4(21):6800-5. PubMed ID: 23000946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries.
    Fan X; Zheng WT; Kuo JL; Singh DJ
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7793-7. PubMed ID: 23863039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermally reduced graphene as high-power anodes for lithium-ion batteries.
    Mukherjee R; Thomas AV; Krishnamurthy A; Koratkar N
    ACS Nano; 2012 Sep; 6(9):7867-78. PubMed ID: 22881216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.
    Wang XL; Han WQ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.
    Kim YJ; Yang CM; Park KC; Kaneko K; Kim YA; Noguchi M; Fujino T; Oyama S; Endo M
    ChemSusChem; 2012 Mar; 5(3):535-41. PubMed ID: 22378623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ionic liquid)-Derived N-Doped Carbons with Hierarchical Porosity for Lithium- and Sodium-Ion Batteries.
    Alkarmo W; Ouhib F; Aqil A; Thomassin JM; Yuan J; Gong J; Vertruyen B; Detrembleur C; Jérôme C
    Macromol Rapid Commun; 2019 Jan; 40(1):e1800545. PubMed ID: 30284334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study.
    Ding Z; Zhao L; Suo L; Jiao Y; Meng S; Hu YS; Wang Z; Chen L
    Phys Chem Chem Phys; 2011 Sep; 13(33):15127-33. PubMed ID: 21789334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for High-Rate Performance Sodium-Ion Batteries.
    Xie X; Chen S; Sun B; Wang C; Wang G
    ChemSusChem; 2015 Sep; 8(17):2948-55. PubMed ID: 26079600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries.
    Ha J; Park SK; Yu SH; Jin A; Jang B; Bong S; Kim I; Sung YE; Piao Y
    Nanoscale; 2013 Sep; 5(18):8647-55. PubMed ID: 23897269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries.
    Rui X; Zhu J; Sim D; Xu C; Zeng Y; Hng HH; Lim TM; Yan Q
    Nanoscale; 2011 Nov; 3(11):4752-8. PubMed ID: 21989744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries.
    Chen W; Zhu Z; Li S; Chen C; Yan L
    Nanoscale; 2012 Mar; 4(6):2124-9. PubMed ID: 22334350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.
    Zhang J; Cai Y; Zhong Q; Lai D; Yao J
    Nanoscale; 2015 Nov; 7(42):17791-7. PubMed ID: 26456870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.
    Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS
    Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries.
    Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.