These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 23225752)

  • 41. Metal Organic Frameworks Derived Fe-N-C Nanostructures as High-Performance Electrodes for Sodium Ion Batteries and Electromagnetic Interference (EMI) Shielding.
    Sridhar V; Lee I; Park H
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33671928
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TiO2/graphene sandwich paper as an anisotropic electrode for high rate lithium ion batteries.
    Li N; Zhou G; Fang R; Li F; Cheng HM
    Nanoscale; 2013 Sep; 5(17):7780-4. PubMed ID: 23860518
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Porous Co3O4/CuO composite assembled from nanosheets as high-performance anodes for lithium-ion batteries.
    Hao Q; Zhao D; Duan H; Xu C
    ChemSusChem; 2015 Apr; 8(8):1435-41. PubMed ID: 25828049
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Peanut-like MnO@C core-shell composites as anode electrodes for high-performance lithium ion batteries.
    Wang S; Ren Y; Liu G; Xing Y; Zhang S
    Nanoscale; 2014 Apr; 6(7):3508-12. PubMed ID: 24567164
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?
    C OA; Caballero Á; Morales J
    Nanoscale; 2012 Mar; 4(6):2083-92. PubMed ID: 22358220
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries.
    Fan JM; Chen JJ; Zhang Q; Chen BB; Zang J; Zheng MS; Dong QF
    ChemSusChem; 2015 Jun; 8(11):1856-61. PubMed ID: 25940023
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes.
    Chen Y; Qu B; Hu L; Xu Z; Li Q; Wang T
    Nanoscale; 2013 Oct; 5(20):9812-20. PubMed ID: 23969779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hierarchical Nitrogen-Doped Graphene/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries.
    Shu C; Li B; Zhang B; Su D
    ChemSusChem; 2015 Dec; 8(23):3973-6. PubMed ID: 26559030
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation and li storage properties of hierarchical porous carbon fibers derived from alginic acid.
    Wu XL; Chen LL; Xin S; Yin YX; Guo YG; Kong QS; Xia YZ
    ChemSusChem; 2010 Jun; 3(6):703-7. PubMed ID: 20480495
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functionalized graphene for high performance lithium ion capacitors.
    Lee JH; Shin WH; Ryou MH; Jin JK; Kim J; Choi JW
    ChemSusChem; 2012 Dec; 5(12):2328-33. PubMed ID: 23112143
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries.
    Ren Y; Zhang J; Liu Y; Li H; Wei H; Li B; Wang X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4776-80. PubMed ID: 22900618
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitrogen-Doped Porous Carbon Nanosheets from Eco-Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries.
    Mondal AK; Kretschmer K; Zhao Y; Liu H; Wang C; Sun B; Wang G
    Chemistry; 2017 Mar; 23(15):3683-3690. PubMed ID: 28039908
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.
    Chen LF; Zhang XD; Liang HW; Kong M; Guan QF; Chen P; Wu ZY; Yu SH
    ACS Nano; 2012 Aug; 6(8):7092-102. PubMed ID: 22769051
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Graphene-wrapped MnO2 -graphene nanoribbons as anode materials for high-performance lithium ion batteries.
    Li L; Raji AR; Tour JM
    Adv Mater; 2013 Nov; 25(43):6298-302. PubMed ID: 23996876
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tin sulphide nanoflowers anchored on three-dimensional porous graphene networks as high-performance anode for sodium-ion batteries.
    Ye J; Chen Z; Liu Q; Xu C
    J Colloid Interface Sci; 2018 Apr; 516():1-8. PubMed ID: 29408101
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications.
    Zhao X; Hayner CM; Kung MC; Kung HH
    ACS Nano; 2011 Nov; 5(11):8739-49. PubMed ID: 21980979
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Sustainable Route from Biomass Byproduct Okara to High Content Nitrogen-Doped Carbon Sheets for Efficient Sodium Ion Batteries.
    Yang T; Qian T; Wang M; Shen X; Xu N; Sun Z; Yan C
    Adv Mater; 2016 Jan; 28(3):539-45. PubMed ID: 26598415
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries.
    Zhang K; Han P; Gu L; Zhang L; Liu Z; Kong Q; Zhang C; Dong S; Zhang Z; Yao J; Xu H; Cui G; Chen L
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):658-64. PubMed ID: 22211424
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Graphene-molybdenum oxynitride porous material with improved cyclic stability and rate capability for rechargeable lithium ion batteries.
    Zhou D; Wu H; Wei Z; Han BH
    Phys Chem Chem Phys; 2013 Oct; 15(39):16898-906. PubMed ID: 24002680
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks.
    Xue DJ; Xin S; Yan Y; Jiang KC; Yin YX; Guo YG; Wan LJ
    J Am Chem Soc; 2012 Feb; 134(5):2512-5. PubMed ID: 22260540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.