These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23225773)

  • 1. Characterization of human skeletal stem and bone cell populations using dielectrophoresis.
    Ismail A; Hughes MP; Mulhall HJ; Oreffo RO; Labeed FH
    J Tissue Eng Regen Med; 2015 Feb; 9(2):162-8. PubMed ID: 23225773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method to isolate and purify human bone marrow stromal stem cells.
    Gronthos S; Zannettino AC
    Methods Mol Biol; 2008; 449():45-57. PubMed ID: 18370082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microarray approach to the identification of polyurethanes for the isolation of human skeletal progenitor cells and augmentation of skeletal cell growth.
    Tare RS; Khan F; Tourniaire G; Morgan SM; Bradley M; Oreffo RO
    Biomaterials; 2009 Feb; 30(6):1045-55. PubMed ID: 19022500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts.
    Pautke C; Schieker M; Tischer T; Kolk A; Neth P; Mutschler W; Milz S
    Anticancer Res; 2004; 24(6):3743-8. PubMed ID: 15736406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid dielectrophoretic characterization of single cells using the dielectrophoretic spring.
    Su HW; Prieto JL; Voldman J
    Lab Chip; 2013 Oct; 13(20):4109-17. PubMed ID: 23970334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular isolation, culture and characterization of the marrow sac cells in human tubular bone.
    Bi LX; Mainous EG; Yngve DA; Buford WL
    J Musculoskelet Neuronal Interact; 2008; 8(1):43-9. PubMed ID: 18398264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dielectrophoresis enrichment of CD34+ cells from peripheral blood stem cell harvests.
    Stephens M; Talary MS; Pethig R; Burnett AK; Mills KI
    Bone Marrow Transplant; 1996 Oct; 18(4):777-82. PubMed ID: 8899194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of human clonogenic osteoblast progenitors immunoselected from fetal bone marrow stroma using STRO-1 monoclonal antibody.
    Oyajobi BO; Lomri A; Hott M; Marie PJ
    J Bone Miner Res; 1999 Mar; 14(3):351-61. PubMed ID: 10027900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further characterization of cells expressing STRO-1 in cultures of adult human bone marrow stromal cells.
    Stewart K; Walsh S; Screen J; Jefferiss CM; Chainey J; Jordan GR; Beresford JN
    J Bone Miner Res; 1999 Aug; 14(8):1345-56. PubMed ID: 10457267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique dielectric properties distinguish stem cells and their differentiated progeny.
    Flanagan LA; Lu J; Wang L; Marchenko SA; Jeon NL; Lee AP; Monuki ES
    Stem Cells; 2008 Mar; 26(3):656-65. PubMed ID: 18096719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp.
    Shi S; Gronthos S
    J Bone Miner Res; 2003 Apr; 18(4):696-704. PubMed ID: 12674330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and enrichment of Stro-1 immunoselected mesenchymal stem cells from adult human bone marrow.
    Williams EL; White K; Oreffo RO
    Methods Mol Biol; 2013; 1035():67-73. PubMed ID: 23959983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of a mouse bone marrow population enriched in stem and progenitor cells by centrifugation on a Percoll gradient.
    Rosca AM; Burlacu A
    Biotechnol Appl Biochem; 2010 Apr; 55(4):199-208. PubMed ID: 20331436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations.
    Psaltis PJ; Paton S; See F; Arthur A; Martin S; Itescu S; Worthley SG; Gronthos S; Zannettino AC
    J Cell Physiol; 2010 May; 223(2):530-40. PubMed ID: 20162565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectrophoresis: a review of applications for stem cell research.
    Pethig R; Menachery A; Pells S; De Sousa P
    J Biomed Biotechnol; 2010; 2010():182581. PubMed ID: 20490279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells.
    Gagnon ZR
    Electrophoresis; 2011 Sep; 32(18):2466-87. PubMed ID: 21922493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of human bone marrow stem cells to individual skeletal myotubes followed by myogenic gene activation.
    Lee JH; Kosinski PA; Kemp DM
    Exp Cell Res; 2005 Jul; 307(1):174-82. PubMed ID: 15922737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectrophoresis as a tool for electrophysiological characterization of stem cells.
    Giduthuri AT; Theodossiou SK; Schiele NR; Srivastava SK
    Biophys Rev (Melville); 2020 Dec; 1(1):011304. PubMed ID: 38505626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of C15: a novel antibody generated by phage display against mesenchymal stem cell-enriched fractions of adult human marrow.
    Letchford J; Cardwell AM; Stewart K; Coogans KK; Cox JP; Lee M; Beresford JN; Perry MJ; Welham MJ
    J Immunol Methods; 2006 Jan; 308(1-2):124-37. PubMed ID: 16386756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.