These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23226231)

  • 21. Incremental learning of tasks from user demonstrations, past experiences, and vocal comments.
    Pardowitz M; Knoop S; Dillmann R; Zöllner RD
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):322-32. PubMed ID: 17416160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dynamic neural field approach to cognitive robotics.
    Erlhagen W; Bicho E
    J Neural Eng; 2006 Sep; 3(3):R36-54. PubMed ID: 16921201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intentional Movement Performance Ability (IMPA): a method for robot-aided quantitative assessment of motor function.
    Shin SY; Kim JY; Lee S; Lee J; Kim SJ; Kim C
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650498. PubMed ID: 24187313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Properties of synergies arising from a theory of optimal motor behavior.
    Chhabra M; Jacobs RA
    Neural Comput; 2006 Oct; 18(10):2320-42. PubMed ID: 16907628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Human-Robot Co-Manipulation Approach Based on Human Sensorimotor Information.
    Peternel L; Tsagarakis N; Ajoudani A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):811-822. PubMed ID: 28436880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of motor control and behavior in multi agent systems by means of artificial neural networks.
    Uthmann T; Dauscher P
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):119-25. PubMed ID: 15621314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perception-action map learning in controlled multiscroll systems applied to robot navigation.
    Arena P; De Fiore S; Fortuna L; Patané L
    Chaos; 2008 Dec; 18(4):043119. PubMed ID: 19123629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contact-state classification in human-demonstrated robot compliant motion tasks using the boosting algorithm.
    Cabras S; Castellanos ME; Staffetti E
    IEEE Trans Syst Man Cybern B Cybern; 2010 Oct; 40(5):1372-86. PubMed ID: 20106744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impedance learning for robotic contact tasks using natural actor-critic algorithm.
    Kim B; Park J; Park S; Kang S
    IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):433-43. PubMed ID: 19696001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applications of artificial intelligence in safe human-robot interactions.
    Najmaei N; Kermani MR
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):448-59. PubMed ID: 20699212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emergence of structured interactions: from a theoretical model to pragmatic robotics.
    Revel A; Andry P
    Neural Netw; 2009 Mar; 22(2):116-25. PubMed ID: 19243912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of Self-Organized Task Specialization in Robot Swarms.
    Ferrante E; Turgut AE; Duéñez-Guzmán E; Dorigo M; Wenseleers T
    PLoS Comput Biol; 2015 Aug; 11(8):e1004273. PubMed ID: 26247819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From evolutionary ecosystem simulations to computational models of human behavior.
    Bentley PJ; Lim SL
    Wiley Interdiscip Rev Cogn Sci; 2022 Nov; 13(6):e1622. PubMed ID: 36111832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interacting With Robots to Investigate the Bases of Social Interaction.
    Sciutti A; Sandini G
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2295-2304. PubMed ID: 29035218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On learning, representing, and generalizing a task in a humanoid robot.
    Calinon S; Guenter F; Billard A
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):286-98. PubMed ID: 17416157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-time multiple human perception with color-depth cameras on a mobile robot.
    Zhang H; Reardon C; Parker LE
    IEEE Trans Cybern; 2013 Oct; 43(5):1429-41. PubMed ID: 23974672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Off-line simulation inspires insight: A neurodynamics approach to efficient robot task learning.
    Sousa E; Erlhagen W; Ferreira F; Bicho E
    Neural Netw; 2015 Dec; 72():123-39. PubMed ID: 26548945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of behavior-based and planning techniques on the small robot maze exploration problem.
    Slusný S; Neruda R; Vidnerová P
    Neural Netw; 2010 May; 23(4):560-7. PubMed ID: 20346859
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning tactical human behavior through observation of human performance.
    Fernlund HK; Gonzalez AJ; Georgiopoulos M; DeMara RF
    IEEE Trans Syst Man Cybern B Cybern; 2006 Feb; 36(1):128-40. PubMed ID: 16468572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Encouraging behavioral diversity in evolutionary robotics: an empirical study.
    Mouret JB; Doncieux S
    Evol Comput; 2012; 20(1):91-133. PubMed ID: 21838553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.