BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 23226354)

  • 1. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells.
    Lopert P; Day BJ; Patel M
    PLoS One; 2012; 7(11):e50683. PubMed ID: 23226354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption.
    Lopert P; Patel M
    Redox Biol; 2014; 2():667-72. PubMed ID: 24936441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotinamide nucleotide transhydrogenase (Nnt) links the substrate requirement in brain mitochondria for hydrogen peroxide removal to the thioredoxin/peroxiredoxin (Trx/Prx) system.
    Lopert P; Patel M
    J Biol Chem; 2014 May; 289(22):15611-20. PubMed ID: 24722990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system.
    Drechsel DA; Patel M
    J Biol Chem; 2010 Sep; 285(36):27850-8. PubMed ID: 20558743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial aconitase knockdown attenuates paraquat-induced dopaminergic cell death via decreased cellular metabolism and release of iron and H₂O₂.
    Cantu D; Fulton RE; Drechsel DA; Patel M
    J Neurochem; 2011 Jul; 118(1):79-92. PubMed ID: 21517855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: Implications for mitochondria mediated oxidative stress signaling events.
    Singh N; Lawana V; Luo J; Phong P; Abdalla A; Palanisamy B; Rokad D; Sarkar S; Jin H; Anantharam V; Kanthasamy AG; Kanthasamy A
    Neurobiol Dis; 2018 Sep; 117():82-113. PubMed ID: 29859868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thioredoxin reductase-2 is essential for keeping low levels of H(2)O(2) emission from isolated heart mitochondria.
    Stanley BA; Sivakumaran V; Shi S; McDonald I; Lloyd D; Watson WH; Aon MA; Paolocci N
    J Biol Chem; 2011 Sep; 286(38):33669-77. PubMed ID: 21832082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic characterization of the thioredoxin system in the removal of hydrogen peroxide.
    Pannala VR; Dash RK
    Free Radic Biol Med; 2015 Jan; 78():42-55. PubMed ID: 25451645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Necrosis, apoptosis, necroptosis, three modes of action of dopaminergic neuron neurotoxins.
    Callizot N; Combes M; Henriques A; Poindron P
    PLoS One; 2019; 14(4):e0215277. PubMed ID: 31022188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiol-metabolizing proteins and endothelial redox state: differential modulation of eNOS and biopterin pathways.
    Sugiyama T; Michel T
    Am J Physiol Heart Circ Physiol; 2010 Jan; 298(1):H194-201. PubMed ID: 19897710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dieldrin-induced neurotoxicity involves impaired mitochondrial bioenergetics and an endoplasmic reticulum stress response in rat dopaminergic cells.
    Schmidt JT; Rushin A; Boyda J; Souders CL; Martyniuk CJ
    Neurotoxicology; 2017 Dec; 63():1-12. PubMed ID: 28844784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Thioredoxin System as a Modulator of Cyclophilin D Redox State.
    Folda A; Citta A; Scalcon V; Calì T; Zonta F; Scutari G; Bindoli A; Rigobello MP
    Sci Rep; 2016 Mar; 6():23071. PubMed ID: 26975474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism.
    Mitozo PA; de Souza LF; Loch-Neckel G; Flesch S; Maris AF; Figueiredo CP; Dos Santos AR; Farina M; Dafre AL
    Free Radic Biol Med; 2011 Jul; 51(1):69-77. PubMed ID: 21440059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate and inhibitor specificities differ between human cytosolic and mitochondrial thioredoxin reductases: Implications for development of specific inhibitors.
    Rackham O; Shearwood AM; Thyer R; McNamara E; Davies SM; Callus BA; Miranda-Vizuete A; Berners-Price SJ; Cheng Q; Arnér ES; Filipovska A
    Free Radic Biol Med; 2011 Mar; 50(6):689-99. PubMed ID: 21172426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial respiratory chain involvement in peroxiredoxin 3 oxidation by phenethyl isothiocyanate and auranofin.
    Brown KK; Cox AG; Hampton MB
    FEBS Lett; 2010 Mar; 584(6):1257-62. PubMed ID: 20176019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells.
    Selvakumar GP; Iyer SS; Kempuraj D; Raju M; Thangavel R; Saeed D; Ahmed ME; Zahoor H; Raikwar SP; Zaheer S; Zaheer A
    Mol Neurobiol; 2018 Sep; 55(9):7132-7152. PubMed ID: 29383690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TrxR2 deficiencies promote chondrogenic differentiation and induce apoptosis of chondrocytes through mitochondrial reactive oxygen species.
    Yan J; Xu J; Fei Y; Jiang C; Zhu W; Han Y; Lu S
    Exp Cell Res; 2016 May; 344(1):67-75. PubMed ID: 27107686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in bioenergetic function induced by Parkinson's disease mimetic compounds: lack of correlation with superoxide generation.
    Dranka BP; Zielonka J; Kanthasamy AG; Kalyanaraman B
    J Neurochem; 2012 Sep; 122(5):941-51. PubMed ID: 22708893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial thioredoxin reductase inhibition, selenium status, and Nrf-2 activation are determinant factors modulating the toxicity of mercury compounds.
    Branco V; Godinho-Santos A; Gonçalves J; Lu J; Holmgren A; Carvalho C
    Free Radic Biol Med; 2014 Aug; 73():95-105. PubMed ID: 24816296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation.
    Radenkovic F; Holland O; Vanderlelie JJ; Perkins AV
    Biochem Pharmacol; 2017 Dec; 146():42-52. PubMed ID: 28947276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.