BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 23226518)

  • 1. Identification of elements that dictate the specificity of mitochondrial Hsp60 for its co-chaperonin.
    Parnas A; Nisemblat S; Weiss C; Levy-Rimler G; Pri-Or A; Zor T; Lund PA; Bross P; Azem A
    PLoS One; 2012; 7(12):e50318. PubMed ID: 23226518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of a mobile loop in regulating chaperonin/ co-chaperonin interaction: humans versus Escherichia coli.
    Richardson A; Schwager F; Landry SJ; Georgopoulos C
    J Biol Chem; 2001 Feb; 276(7):4981-7. PubMed ID: 11050098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Differences between E. coli and ESKAPE Pathogen GroES/GroEL.
    Sivinski J; Ambrose AJ; Panfilenko I; Zerio CJ; Machulis JM; Mollasalehi N; Kaneko LK; Stevens M; Ray AM; Park Y; Wu C; Hoang QQ; Johnson SM; Chapman E
    mBio; 2021 Jan; 12(1):. PubMed ID: 33436430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization and structure determination of a symmetrical 'football' complex of the mammalian mitochondrial Hsp60-Hsp10 chaperonins.
    Nisemblat S; Parnas A; Yaniv O; Azem A; Frolow F
    Acta Crystallogr F Struct Biol Commun; 2014 Jan; 70(Pt 1):116-9. PubMed ID: 24419632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single-ring mitochondrial chaperonin (Hsp60-Hsp10) can substitute for GroEL-GroES in vivo.
    Nielsen KL; McLennan N; Masters M; Cowan NJ
    J Bacteriol; 1999 Sep; 181(18):5871-5. PubMed ID: 10482535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaperonin-co-chaperonin interactions.
    Boshoff A
    Subcell Biochem; 2015; 78():153-78. PubMed ID: 25487021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and Genetic Analysis of the Chlamydia GroEL Chaperonins.
    Illingworth M; Hooppaw AJ; Ruan L; Fisher DJ; Chen L
    J Bacteriol; 2017 Jun; 199(12):. PubMed ID: 28396349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.
    Gupta P; Aggarwal N; Batra P; Mishra S; Chaudhuri TK
    Int J Biochem Cell Biol; 2006; 38(11):1975-85. PubMed ID: 16822698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaperonin: Co-chaperonin Interactions.
    Boshoff A
    Subcell Biochem; 2023; 101():213-246. PubMed ID: 36520309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the chaperonin cofactor Hsp10 in protein folding and sorting in yeast mitochondria.
    Höhfeld J; Hartl FU
    J Cell Biol; 1994 Jul; 126(2):305-15. PubMed ID: 7913473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate.
    Taguchi H
    J Mol Biol; 2015 Sep; 427(18):2912-8. PubMed ID: 25900372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaperonin function depends on structure and disorder in co-chaperonin mobile loops.
    Landry SJ; Steede NK; Garaudy AM; Maskos K; Viitanen PV
    Pac Symp Biocomput; 1999; ():520-31. PubMed ID: 10380224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triggering protein folding within the GroEL-GroES complex.
    Madan D; Lin Z; Rye HS
    J Biol Chem; 2008 Nov; 283(46):32003-13. PubMed ID: 18782766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
    Illingworth M; Salisbury J; Li W; Lin D; Chen L
    Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations.
    Kass I; Horovitz A
    Proteins; 2002 Sep; 48(4):611-7. PubMed ID: 12211028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins.
    Machida K; Fujiwara R; Tanaka T; Sakane I; Hongo K; Mizobata T; Kawata Y
    Biochim Biophys Acta; 2009 Sep; 1794(9):1344-54. PubMed ID: 19130907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TEM and STEM-EDS evaluation of metal nanoparticle encapsulation in GroEL/GroES complexes according to the reaction mechanism of chaperonin.
    Yoda H; Koike-Takeshita A
    Microscopy (Oxf); 2021 Jun; 70(3):289-296. PubMed ID: 33173948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional structure and physiological functions of mammalian wild-type HSP60.
    Okamoto T; Ishida R; Yamamoto H; Tanabe-Ishida M; Haga A; Takahashi H; Takahashi K; Goto D; Grave E; Itoh H
    Arch Biochem Biophys; 2015 Nov; 586():10-9. PubMed ID: 26427351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of mutations in GroES that allow GroEL to function as a single ring.
    Liu H; Kovács E; Lund PA
    FEBS Lett; 2009 Jul; 583(14):2365-71. PubMed ID: 19545569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of co-chaperonin homologs on cpn60 oligomers.
    Bonshtien AL; Parnas A; Sharkia R; Niv A; Mizrahi I; Azem A; Weiss C
    Cell Stress Chaperones; 2009 Sep; 14(5):509-19. PubMed ID: 19224397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.