These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 23226586)

  • 1. How to infer gene networks from expression profiles, revisited.
    Penfold CA; Wild DL
    Interface Focus; 2011 Dec; 1(6):857-70. PubMed ID: 23226586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference of Gene Regulatory Network Based on Local Bayesian Networks.
    Liu F; Zhang SW; Guo WF; Wei ZG; Chen L
    PLoS Comput Biol; 2016 Aug; 12(8):e1005024. PubMed ID: 27479082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodic synchronization of isolated network elements facilitates simulating and inferring gene regulatory networks including stochastic molecular kinetics.
    Hettich J; Gebhardt JCM
    BMC Bioinformatics; 2022 Jan; 23(1):13. PubMed ID: 34986805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring Gene Regulatory Networks in the Arabidopsis Root Using a Dynamic Bayesian Network Approach.
    de Luis Balaguer MA; Sozzani R
    Methods Mol Biol; 2017; 1629():331-348. PubMed ID: 28623595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics.
    Aijö T; Lähdesmäki H
    Bioinformatics; 2009 Nov; 25(22):2937-44. PubMed ID: 19706742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inference of gene regulatory networks based on nonlinear ordinary differential equations.
    Ma B; Fang M; Jiao X
    Bioinformatics; 2020 Dec; 36(19):4885-4893. PubMed ID: 31950997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference of gene regulatory networks incorporating multi-source biological knowledge via a state space model with L1 regularization.
    Hasegawa T; Yamaguchi R; Nagasaki M; Miyano S; Imoto S
    PLoS One; 2014; 9(8):e105942. PubMed ID: 25162401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks.
    Chaitankar V; Ghosh P; Perkins EJ; Gong P; Zhang C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S19. PubMed ID: 20946602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.
    Xiao X; Zhang W; Zou X
    PLoS One; 2015; 10(3):e0119294. PubMed ID: 25807392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate determination of causalities in gene regulatory networks by dissecting downstream target genes.
    Jia Z; Zhang X
    Front Genet; 2022; 13():923339. PubMed ID: 36568360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bayesian framework that integrates heterogeneous data for inferring gene regulatory networks.
    Santra T
    Front Bioeng Biotechnol; 2014; 2():13. PubMed ID: 25152886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach.
    Zou C; Ladroue C; Guo S; Feng J
    BMC Bioinformatics; 2010 Jun; 11():337. PubMed ID: 20565962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study of Algorithms Reconstructing Gene Regulatory Network with Resampling and Conditional Mutual Information].
    Liu F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Oct; 33(5):985-90. PubMed ID: 29714955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical and Machine Learning Approaches to Predict Gene Regulatory Networks From Transcriptome Datasets.
    Mochida K; Koda S; Inoue K; Nishii R
    Front Plant Sci; 2018; 9():1770. PubMed ID: 30555503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid framework for reverse engineering of robust Gene Regulatory Networks.
    Jafari M; Ghavami B; Sattari V
    Artif Intell Med; 2017 Jun; 79():15-27. PubMed ID: 28602483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring Gene Regulatory Networks from Multiple Datasets.
    Penfold CA; Gherman I; Sybirna A; Wild DL
    Methods Mol Biol; 2019; 1883():251-282. PubMed ID: 30547404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parametric and non-parametric gradient matching for network inference: a comparison.
    Dony L; He F; Stumpf MPH
    BMC Bioinformatics; 2019 Jan; 20(1):52. PubMed ID: 30683048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification-Based Inference of Dynamical Models of Gene Regulatory Networks.
    Fehr DA; Handzlik JE; Manu ; Loh YL
    G3 (Bethesda); 2019 Dec; 9(12):4183-4195. PubMed ID: 31624138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.