BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

999 related articles for article (PubMed ID: 23226696)

  • 1. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa.
    Gurunathan S; Han JW; Dayem AA; Eppakayala V; Kim JH
    Int J Nanomedicine; 2012; 7():5901-14. PubMed ID: 23226696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231).
    Gurunathan S; Han J; Park JH; Kim JH
    Int J Nanomedicine; 2014; 9():1783-97. PubMed ID: 24741313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene.
    Gurunathan S; Han JW; Park JH; Eppakayala V; Kim JH
    Int J Nanomedicine; 2014; 9():363-77. PubMed ID: 24453487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent.
    Choi YJ; Kim E; Han J; Kim JH; Gurunathan S
    Molecules; 2016 Mar; 21(3):375. PubMed ID: 26999102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green synthesis of graphene and its cytotoxic effects in human breast cancer cells.
    Gurunathan S; Han JW; Eppakayala V; Kim JH
    Int J Nanomedicine; 2013; 8():1015-27. PubMed ID: 23687445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.
    Liu S; Zeng TH; Hofmann M; Burcombe E; Wei J; Jiang R; Kong J; Chen Y
    ACS Nano; 2011 Sep; 5(9):6971-80. PubMed ID: 21851105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1).
    Gurunathan S; Kang MH; Jeyaraj M; Kim JH
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30634552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green chemistry approach for the synthesis of biocompatible graphene.
    Gurunathan S; Han JW; Kim JH
    Int J Nanomedicine; 2013; 8():2719-32. PubMed ID: 23940417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets.
    de Faria AF; Martinez DS; Meira SM; de Moraes AC; Brandelli A; Filho AG; Alves OL
    Colloids Surf B Biointerfaces; 2014 Jan; 113():115-24. PubMed ID: 24060936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells.
    Gurunathan S; Han JW; Eppakayala V; Kim JH
    Colloids Surf B Biointerfaces; 2013 May; 105():58-66. PubMed ID: 23352948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule.
    Gurunathan S; Han JW; Kim ES; Park JH; Kim JH
    Int J Nanomedicine; 2015; 10():2951-69. PubMed ID: 25931821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial mechanism of reduced graphene oxide-copper oxide (rGO-CuO) nanocomposite films: The case of Pseudomonas aeruginosa PAO1.
    Alayande AB; Obaid M; Kim IS
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110596. PubMed ID: 32228972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Graphene Oxide and Silver Nanoparticles Hybrid Composite on
    Lozovskis P; Jankauskaitė V; Guobienė A; Kareivienė V; Vitkauskienė A
    Int J Nanomedicine; 2020; 15():5147-5163. PubMed ID: 32764942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SnO
    Ahamed M; Akhtar MJ; Khan MAM; Alhadlaq HA
    Int J Nanomedicine; 2021; 16():89-104. PubMed ID: 33447029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles.
    Yang Z; Hao X; Chen S; Ma Z; Wang W; Wang C; Yue L; Sun H; Shao Q; Murugadoss V; Guo Z
    J Colloid Interface Sci; 2019 Jan; 533():13-23. PubMed ID: 30144689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vancomycin-assisted green synthesis of reduced graphene oxide for antimicrobial applications.
    Xu LQ; Liao YB; Li NN; Li YJ; Zhang JY; Wang YB; Hu XF; Li CM
    J Colloid Interface Sci; 2018 Mar; 514():733-739. PubMed ID: 29316529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Ag/rGO composite materials with antibacterial activities using facile and rapid microwave-assisted green route.
    Fan B; Li Y; Han F; Su T; Li J; Zhang R
    J Mater Sci Mater Med; 2018 May; 29(5):69. PubMed ID: 29748718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile one pot microbe-mediated
    Patil AG
    Nanotechnology; 2022 Jan; 33(13):. PubMed ID: 34933299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofabrication of Lysinibacillus sphaericus-reduced graphene oxide in three-dimensional polyacrylamide/carbon nanocomposite hydrogels for skin tissue engineering.
    Narayanan KB; Choi SM; Han SS
    Colloids Surf B Biointerfaces; 2019 Sep; 181():539-548. PubMed ID: 31185446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of graphene oxide nanosheets on visible light-assisted antibacterial activity of vertically-aligned copper oxide nanowire arrays.
    Kiani F; Astani NA; Rahighi R; Tayyebi A; Tayebi M; Khezri J; Hashemi E; Rothlisberger U; Simchi A
    J Colloid Interface Sci; 2018 Jul; 521():119-131. PubMed ID: 29558691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.