These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 23227854)
1. Harnessing the complexity of gene expression data from cancer: from single gene to structural pathway methods. Emmert-Streib F; Tripathi S; de Matos Simoes R Biol Direct; 2012 Dec; 7():44. PubMed ID: 23227854 [TBL] [Abstract][Full Text] [Related]
2. Discovery of highly differentiative gene groups from microarray gene expression data using the gene club approach. Mao S; Dong G J Bioinform Comput Biol; 2005 Dec; 3(6):1263-80. PubMed ID: 16374906 [TBL] [Abstract][Full Text] [Related]
3. A probabilistic approach for automated discovery of perturbed genes using expression data from microarray or RNA-Seq. Sundaramurthy G; Eghbalnia HR Comput Biol Med; 2015 Dec; 67():29-40. PubMed ID: 26492320 [TBL] [Abstract][Full Text] [Related]
4. Many accurate small-discriminatory feature subsets exist in microarray transcript data: biomarker discovery. Grate LR BMC Bioinformatics; 2005 Apr; 6():97. PubMed ID: 15826317 [TBL] [Abstract][Full Text] [Related]
5. Ranking analysis for identifying differentially expressed genes. Qi Y; Sun H; Sun Q; Pan L Genomics; 2011 May; 97(5):326-9. PubMed ID: 21402142 [TBL] [Abstract][Full Text] [Related]
6. Microarray data analysis: from hypotheses to conclusions using gene expression data. Armstrong NJ; van de Wiel MA Cell Oncol; 2004; 26(5-6):279-90. PubMed ID: 15623938 [TBL] [Abstract][Full Text] [Related]
7. Arrow plot: a new graphical tool for selecting up and down regulated genes and genes differentially expressed on sample subgroups. Silva-Fortes C; Amaral Turkman MA; Sousa L BMC Bioinformatics; 2012 Jun; 13():147. PubMed ID: 22734592 [TBL] [Abstract][Full Text] [Related]
8. Partition decoupling for multi-gene analysis of gene expression profiling data. Braun R; Leibon G; Pauls S; Rockmore D BMC Bioinformatics; 2011 Dec; 12():497. PubMed ID: 22208906 [TBL] [Abstract][Full Text] [Related]
9. Selecting differentially expressed genes from microarray experiments. Pepe MS; Longton G; Anderson GL; Schummer M Biometrics; 2003 Mar; 59(1):133-42. PubMed ID: 12762450 [TBL] [Abstract][Full Text] [Related]
11. Gene-set approach for expression pattern analysis. Nam D; Kim SY Brief Bioinform; 2008 May; 9(3):189-97. PubMed ID: 18202032 [TBL] [Abstract][Full Text] [Related]
12. New gene selection method for classification of cancer subtypes considering within-class variation. Cho JH; Lee D; Park JH; Lee IB FEBS Lett; 2003 Sep; 551(1-3):3-7. PubMed ID: 12965195 [TBL] [Abstract][Full Text] [Related]
13. Pathway recognition and augmentation by computational analysis of microarray expression data. Novak BA; Jain AN Bioinformatics; 2006 Jan; 22(2):233-41. PubMed ID: 16278238 [TBL] [Abstract][Full Text] [Related]
14. Can we identify cellular pathways implicated in cancer using gene expression data? Shah N; Lepre J; Tu Y; Stolovitzky G Proc IEEE Comput Soc Bioinform Conf; 2003; 2():94-103. PubMed ID: 16452783 [TBL] [Abstract][Full Text] [Related]
15. Statistical assessment of functional categories of genes deregulated in pathological conditions by using microarray data. Maglietta R; Piepoli A; Catalano D; Licciulli F; Carella M; Liuni S; Pesole G; Perri F; Ancona N Bioinformatics; 2007 Aug; 23(16):2063-72. PubMed ID: 17540679 [TBL] [Abstract][Full Text] [Related]
16. Normality of oligonucleotide microarray data and implications for parametric statistical analyses. Giles PJ; Kipling D Bioinformatics; 2003 Nov; 19(17):2254-62. PubMed ID: 14630654 [TBL] [Abstract][Full Text] [Related]
17. Mining published lists of cancer related microarray experiments: identification of a gene expression signature having a critical role in cell-cycle control. Finocchiaro G; Mancuso F; Muller H BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S14. PubMed ID: 16351740 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous gene clustering and subset selection for sample classification via MDL. Jörnsten R; Yu B Bioinformatics; 2003 Jun; 19(9):1100-9. PubMed ID: 12801870 [TBL] [Abstract][Full Text] [Related]
19. Group testing for pathway analysis improves comparability of different microarray datasets. Manoli T; Gretz N; Gröne HJ; Kenzelmann M; Eils R; Brors B Bioinformatics; 2006 Oct; 22(20):2500-6. PubMed ID: 16895928 [TBL] [Abstract][Full Text] [Related]
20. LS Bound based gene selection for DNA microarray data. Zhou X; Mao KZ Bioinformatics; 2005 Apr; 21(8):1559-64. PubMed ID: 15598834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]