These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23228102)

  • 61. Automated identification of Doppler microembolic signals: comparison of two techniques.
    Georgiadis D; Uhlmann F; Astler M; Cencetti S; Zierz S
    Neurol Res; 2000 Oct; 22(7):738-40. PubMed ID: 11091982
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Time period required for transcranial Doppler monitoring of embolic signals to predict recurrent risk of embolic transient ischemic attack and stroke from arterial stenosis.
    Blaser T; Glanz W; Krueger S; Wallesch CW; Kropf S; Goertler M
    Stroke; 2004 Sep; 35(9):2155-9. PubMed ID: 15256678
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [A young patient with ischemic stroke due to carotid artery dissection in whom number of microembolic signals was followed-up].
    Sasaki M; Nakajima M; Hirano T; Yokoo E; Watanabe M; Uchino M
    Rinsho Shinkeigaku; 2009; 49(2-3):127-9. PubMed ID: 19348180
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Foam sclerotherapy: cardiac and cerebral monitoring.
    Morrison N; Neuhardt DL
    Phlebology; 2009 Dec; 24(6):252-9. PubMed ID: 19952381
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Detection of microembolic signals using power M-mode Doppler sonography in acute stroke patients with intracranial artery stenosis.
    Tan TY; Chen TY
    J Clin Ultrasound; 2008 Sep; 36(7):422-6. PubMed ID: 18615673
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Carotid angioplasty and stenting: will periprocedural transcranial Doppler monitoring be important?
    Benichou H; Bergeron P
    J Endovasc Surg; 1996 May; 3(2):217-23. PubMed ID: 8798140
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Interpretation of TCD spectral patterns detected during carotid artery stent interventions.
    Jeong HS; Song HJ; Lee JH; Choi SW; Kim J
    J Endovasc Ther; 2011 Aug; 18(4):518-26. PubMed ID: 21861741
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Trancranial Doppler: value in clinical practice.
    Martinelli O; Benedetti-Valentini F
    Int Angiol; 2009 Aug; 28(4):249-53. PubMed ID: 19648867
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [B-mode sonography visualizing microemboli flow in the main cerebral arteries].
    Si-Mohamed S; Aïchoun I; Schuster I; Di Rienzo M; Dauzat M; Pérez-Martin A; Bouly S
    J Mal Vasc; 2015 May; 40(3):187-91. PubMed ID: 25862592
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Influence of transducer frequency on Doppler microemboli signals in an in vivo model.
    Georgiadis D; Wenzel A; Zerkowski HR; Zierz S; Lindner A
    Neurol Res; 1998 Apr; 20(3):198-200. PubMed ID: 9583579
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A Time-Frequency Approach for Cerebral Embolic Load Monitoring.
    Imaduddin SM; LaRovere KL; Kussman BD; Heldt T
    IEEE Trans Biomed Eng; 2020 Apr; 67(4):1007-1018. PubMed ID: 31295101
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Design considerations for a transcranial Doppler coupled to a stereotactic position arm.
    Mignault K; Doblar DD; Guthrie B; Fast D
    Ultrasound Med Biol; 1999 Jan; 25(1):111-9. PubMed ID: 10048808
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Micro-bubble transcranial Doppler ultrasound for exclusion of right-to-left circulatory shunts: why should we provide the service?
    Chiu AH; Haluszkiewicz E; McAuliffe W
    J Med Imaging Radiat Oncol; 2014 Aug; 58(4):464-8. PubMed ID: 24589171
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Detection of Doppler Microembolic Signals Using High Order Statistics.
    Geryes M; Ménigot S; Hassan W; Mcheick A; Charara J; Girault JM
    Comput Math Methods Med; 2016; 2016():3243290. PubMed ID: 28096889
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Study of Vertebral Artery Dissection by Ultrasound Superb Microvascular Imaging Based on Deep Neural Network Model.
    Wang Y; Jiao H; Peng H; Liu J; Ma L; Wang J
    J Healthc Eng; 2022; 2022():9713899. PubMed ID: 35256903
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Involvement of Matrix Metalloproteinase 9 in Vertebral Arterial Dissection With Posterior Circulation Ischemic Stroke.
    Chen CY; Chang FC; Lee IH; Chung CP
    J Am Heart Assoc; 2020 Oct; 9(19):e016743. PubMed ID: 32921202
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The diagnosis of vertebrobasilar insufficiency using transcranial Doppler ultrasound.
    Alnaami I; Siddiqui M; Saqqur M
    Case Rep Med; 2012; 2012():894913. PubMed ID: 23251187
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bilateral Vertebral Artery Dissection - Multiple Artery Affection or Early Recurrence?
    Lovrenčić-Huzjan A; Bosnar-Puretić M; Vuković-Cvetković V; Bašić Kes V
    Acta Clin Croat; 2017 Sep; 56(3):550-554. PubMed ID: 29479922
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Microembolus detection by transcranial doppler sonography.
    Dittrich R; Ritter MA; Droste DW
    Eur J Ultrasound; 2002 Nov; 16(1-2):21-30. PubMed ID: 12470847
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Use of a large bore syringe creates significantly fewer high intensity transient signals (HITS) into a cardiopulmonary bypass system than a small bore syringe.
    Rudolph JL; Tilahun D; Treanor PR; Pochay VE; Mahendrakar MA; Sagar P; Babikian VL
    Perfusion; 2006 Jan; 21(1):67-71. PubMed ID: 16485702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.