These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 23228103)
1. Evaluation of biocidal efficacy of copper alloy coatings in comparison with solid metal surfaces: generation of organic copper phosphate nanoflowers. Gutierrez H; Portman T; Pershin V; Ringuette M J Appl Microbiol; 2013 Mar; 114(3):680-7. PubMed ID: 23228103 [TBL] [Abstract][Full Text] [Related]
2. Sporicidal efficacy of thermal-sprayed copper alloy coating. Shafaghi R; Mostaghimi J; Pershin V; Ringuette M Can J Microbiol; 2017 May; 63(5):384-391. PubMed ID: 28177787 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Warnes SL; Caves V; Keevil CW Environ Microbiol; 2012 Jul; 14(7):1730-43. PubMed ID: 22176893 [TBL] [Abstract][Full Text] [Related]
4. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Bagherifard S; Hickey DJ; de Luca AC; Malheiro VN; Markaki AE; Guagliano M; Webster TJ Biomaterials; 2015 Dec; 73():185-97. PubMed ID: 26410786 [TBL] [Abstract][Full Text] [Related]
5. Antimicrobial efficacy and compatibility of solid copper alloys with chemical disinfectants. Steinhauer K; Meyer S; Pfannebecker J; Teckemeyer K; Ockenfeld K; Weber K; Becker B PLoS One; 2018; 13(8):e0200748. PubMed ID: 30096209 [TBL] [Abstract][Full Text] [Related]
6. Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination. Wilks SA; Michels HT; Keevil CW Int J Food Microbiol; 2006 Sep; 111(2):93-8. PubMed ID: 16876278 [TBL] [Abstract][Full Text] [Related]
7. Medical equipment antiseptic processes using the atmospheric plasma sprayed copper coatings. Goudarzi M; Saviz S; Ghoranneviss M; Salar Elahi A J Xray Sci Technol; 2017; 25(3):479-485. PubMed ID: 27911352 [TBL] [Abstract][Full Text] [Related]
8. Dual Antibacterial Properties of Copper-Coated Nanotextured Stainless Steel. Tripathi A; Park J; Pho T; Champion JA Small; 2024 Sep; 20(38):e2311546. PubMed ID: 38766975 [TBL] [Abstract][Full Text] [Related]
9. Surface Roughness of Cu-Bearing Stainless Steel Affects Its Contact-Killing Efficiency by Mediating the Interfacial Interaction with Bacteria. Zhang X; Yang C; Xi T; Zhao J; Yang K ACS Appl Mater Interfaces; 2021 Jan; 13(2):2303-2315. PubMed ID: 33395246 [TBL] [Abstract][Full Text] [Related]
10. Polystyrene films as barrier layers for corrosion protection of copper and copper alloys. Románszki L; Datsenko I; May Z; Telegdi J; Nyikos L; Sand W Bioelectrochemistry; 2014 Jun; 97():7-14. PubMed ID: 24239277 [TBL] [Abstract][Full Text] [Related]
11. In vitro evaluation of antimicrobial efficacy and durability of three copper surfaces used in healthcare. Bryce EA; Velapatino B; Akbari Khorami H; Donnelly-Pierce T; Wong T; Dixon R; Asselin E Biointerphases; 2020 Feb; 15(1):011005. PubMed ID: 32041413 [TBL] [Abstract][Full Text] [Related]
12. Surface microstructure and antibacterial property of an active-screen plasma alloyed austenitic stainless steel surface with Cu and N. Dong Y; Li X; Bell T; Sammons R; Dong H Biomed Mater; 2010 Oct; 5(5):054105. PubMed ID: 20876967 [TBL] [Abstract][Full Text] [Related]
13. A new approach to the hazard classification of alloys based on transformation/dissolution. Skeaff JM; Hardy DJ; King P Integr Environ Assess Manag; 2008 Jan; 4(1):75-93. PubMed ID: 17944545 [TBL] [Abstract][Full Text] [Related]
14. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities. Hahn C; Hans M; Hein C; Mancinelli RL; Mücklich F; Wirth R; Rettberg P; Hellweg CE; Moeller R Astrobiology; 2017 Dec; 17(12):1183-1191. PubMed ID: 29116818 [TBL] [Abstract][Full Text] [Related]
16. Corrosion-induced release of Cu and Zn into rainwater from brass, bronze and their pure metals. A 2-year field study. Herting G; Goidanich S; Odnevall Wallinder I; Leygraf C Environ Monit Assess; 2008 Sep; 144(1-3):455-61. PubMed ID: 17985207 [TBL] [Abstract][Full Text] [Related]
17. Towards long-lasting antibacterial stainless steel surfaces by combining double glow plasma silvering with active screen plasma nitriding. Dong Y; Li X; Tian L; Bell T; Sammons RL; Dong H Acta Biomater; 2011 Jan; 7(1):447-57. PubMed ID: 20727993 [TBL] [Abstract][Full Text] [Related]
18. Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. Cowan MM; Abshire KZ; Houk SL; Evans SM J Ind Microbiol Biotechnol; 2003 Feb; 30(2):102-6. PubMed ID: 12612784 [TBL] [Abstract][Full Text] [Related]
19. Thermal Spray Copper Alloy Coatings as Potent Biocidal and Virucidal Surfaces. Mostaghimi J; Pershin L; Salimijazi H; Nejad M; Ringuette M J Therm Spray Technol; 2021; 30(1-2):25-39. PubMed ID: 38624650 [TBL] [Abstract][Full Text] [Related]
20. A comparative study to evaluate surface microbial contamination associated with copper-containing and stainless steel pens used by nurses in the critical care unit. Casey AL; Karpanen TJ; Adams D; Lambert PA; Nightingale P; Miruszenko L; Elliott TSJ Am J Infect Control; 2011 Oct; 39(8):e52-e54. PubMed ID: 21664004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]