These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2322831)

  • 1. Action potentials in a 'non-spiking' neurone: graded responses and spikes in the afferent P fibre of the crab thoracic-coxal muscle receptor organ.
    Wildman MH; Cannone AJ
    Brain Res; 1990 Feb; 509(2):339-42. PubMed ID: 2322831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory characteristics of the P afferent neurone of the crab thoracic-coxal muscle receptor organ.
    Wildman MH; Cannone AJ
    J Comp Physiol A; 1996 Aug; 179(2):277-89. PubMed ID: 8765562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between afferent neurones in a crab muscle receptor organ.
    Wildman MH; Cannone AJ
    Brain Res; 1991 Nov; 565(1):175-8. PubMed ID: 1773354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory feedback and central afferent interaction in the muscle receptor organ of the crab, Carcinus maenas.
    Wildman M; Cannone A
    J Neurophysiol; 1996 Aug; 76(2):788-98. PubMed ID: 8871199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reflex actions of one proprioceptor on the motoneurones of a muscle receptor and their central modulation in the shore crab.
    Head SI; Bush BM
    J Physiol; 1991 Jun; 437():49-62. PubMed ID: 1890645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system.
    Elson RC; Sillar KT; Bush BM
    J Neurophysiol; 1992 Mar; 67(3):530-46. PubMed ID: 1578243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonspiking and spiking proprioceptors in the crab: nonlinear analysis of nonspiking TCMRO afferents.
    DiCaprio RA
    J Neurophysiol; 2003 Apr; 89(4):1826-36. PubMed ID: 12611947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. After-effects following responses of a muscle stretch receptor of the shore crab, Carcinus maenas.
    Harrison PJ
    Neurosci Lett; 1988 May; 88(2):211-5. PubMed ID: 3380357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonspiking and spiking proprioceptors in the crab: white noise analysis of spiking CB-chordotonal organ afferents.
    Gamble ER; DiCaprio RA
    J Neurophysiol; 2003 Apr; 89(4):1815-25. PubMed ID: 12611948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positive feedback to a muscle receptor stabilized by concurrent self-inhibition.
    Cannone A; Bush BM
    Brain Res; 1981 Dec; 229(1):197-202. PubMed ID: 7306808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Information transfer rate of nonspiking afferent neurons in the crab.
    DiCaprio RA
    J Neurophysiol; 2004 Jul; 92(1):302-10. PubMed ID: 14973322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stretch reflex in crabs evoked by muscle receptor potentials in non-impulsive afferents.
    Bush BM; Cannone AJ
    J Physiol; 1973 Jul; 232(2):95P-96P. PubMed ID: 4727115
    [No Abstract]   [Full Text] [Related]  

  • 13. Coxal muscle receptors in the crab: the receptor potentials of S and T fibers in response to ramp stretches.
    Bush BM; Roberts A
    J Exp Biol; 1971 Dec; 55(3):813-32. PubMed ID: 5160864
    [No Abstract]   [Full Text] [Related]  

  • 14. Replacement of an inherited stretch receptor by a newly evolved stretch receptor in hippid sand crabs.
    Paul DH; Wilson LJ
    J Comp Neurol; 1994 Dec; 350(1):150-60. PubMed ID: 7860798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptor potentials and electrical properties of nonspiking stretch-receptive neurons in the sand crab Emerita analoga (Anomura, Hippidae).
    Paul DH; Bruner J
    J Neurophysiol; 1999 May; 81(5):2493-500. PubMed ID: 10322084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic action on Clarke's column neurones in relation to afferent terminal size.
    Kuno M; Muñoz-Martinez EJ; Randić M
    J Physiol; 1973 Jan; 228(2):343-60. PubMed ID: 4346990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic input from identified muscle afferents to neurones of the dorsal spinocerebellar tract in the cat.
    Tracey DJ; Walmsley B
    J Physiol; 1984 May; 350():599-614. PubMed ID: 6747859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperpolarizing responses to stretch in sensory neurones innervating leech body wall muscle.
    Blackshaw SE; Thompson SW
    J Physiol; 1988 Feb; 396():121-37. PubMed ID: 3411493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encoding of muscle movement on two time scales by a sensory neuron that switches between spiking and bursting modes.
    Birmingham JT; Szuts ZB; Abbott LF; Marder E
    J Neurophysiol; 1999 Nov; 82(5):2786-97. PubMed ID: 10561445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actions of trains and pairs of impulses from single primary afferent fibres on single spinocervical tract cells in cat.
    Brown AG; Koerber HR; Noble R
    J Physiol; 1987 Jan; 382():313-29. PubMed ID: 3625551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.