These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 23228427)

  • 41. The embryonic stem cell test.
    Schulpen SH; Piersma AH
    Methods Mol Biol; 2013; 947():375-82. PubMed ID: 23138917
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of neural differentiation potential of human pluripotent stem cell lines using a quantitative neural differentiation protocol.
    Yin D; Tavakoli T; Gao WQ; Ma W
    Methods Mol Biol; 2012; 873():247-59. PubMed ID: 22528360
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Propensity of human embryonic stem cell lines during early stage of lineage specification controls their terminal differentiation into mature cell types.
    Pal R; Totey S; Mamidi MK; Bhat VS; Totey S
    Exp Biol Med (Maywood); 2009 Oct; 234(10):1230-43. PubMed ID: 19546356
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effective generation of iPS cells from CD34+ cord blood cells by inhibition of p53.
    Takenaka C; Nishishita N; Takada N; Jakt LM; Kawamata S
    Exp Hematol; 2010 Feb; 38(2):154-62. PubMed ID: 19922768
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Human testis-derived embryonic stem cell-like cells are not pluripotent, but possess potential of mesenchymal progenitors.
    Chikhovskaya JV; Jonker MJ; Meissner A; Breit TM; Repping S; van Pelt AM
    Hum Reprod; 2012 Jan; 27(1):210-21. PubMed ID: 22095788
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determinants of pluripotency: from avian, rodents, to primates.
    Martins-Taylor K; Xu RH
    J Cell Biochem; 2010 Jan; 109(1):16-25. PubMed ID: 19937733
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional modulation of ES-derived hepatocyte lineage cells via substrate compliance alteration.
    Li L; Sharma N; Chippada U; Jiang X; Schloss R; Yarmush ML; Langrana NA
    Ann Biomed Eng; 2008 May; 36(5):865-76. PubMed ID: 18266108
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Generation of hepatocytes from cultured mouse embryonic stem cells.
    Kuai XL; Cong XQ; Li XL; Xiao SD
    Liver Transpl; 2003 Oct; 9(10):1094-9. PubMed ID: 14526405
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel purification method of murine embryonic stem cell- and human-induced pluripotent stem cell-derived cardiomyocytes by simple manual dissociation.
    Shinozawa T; Furukawa H; Sato E; Takami K
    J Biomol Screen; 2012 Jun; 17(5):683-91. PubMed ID: 22274911
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pluripotent human stem cells as novel tools in drug discovery and toxicity testing.
    Sartipy P; Bjorquist P; Strehl R; Hyllner J
    IDrugs; 2006 Oct; 9(10):702-5. PubMed ID: 17016777
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differentiation of embryoid-body cells derived from embryonic stem cells into hepatocytes in alginate microbeads in vitro.
    Fang S; Qiu YD; Mao L; Shi XL; Yu DC; Ding YT
    Acta Pharmacol Sin; 2007 Dec; 28(12):1924-30. PubMed ID: 18031606
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cell fate conversion: direct induction of hepatocyte-like cells from fibroblasts.
    Ji S; Zhang L; Hui L
    J Cell Biochem; 2013 Feb; 114(2):256-65. PubMed ID: 22948752
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mitochondrial development of the in vitro hepatic organogenesis model with simultaneous cardiac mesoderm differentiation from murine induced pluripotent stem cells.
    Tamai M; Yamashita A; Tagawa Y
    J Biosci Bioeng; 2011 Nov; 112(5):495-500. PubMed ID: 21816670
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Human pluripotent stem cell-derived cholangiocytes: current status and future applications.
    Kamiya A; Chikada H
    Curr Opin Gastroenterol; 2015 May; 31(3):233-8. PubMed ID: 25850348
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Critical differences in toxicity mechanisms in induced pluripotent stem cell-derived hepatocytes, hepatic cell lines and primary hepatocytes.
    Sjogren AK; Liljevald M; Glinghammar B; Sagemark J; Li XQ; Jonebring A; Cotgreave I; Brolén G; Andersson TB
    Arch Toxicol; 2014 Jul; 88(7):1427-37. PubMed ID: 24912781
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Developing high-fidelity hepatotoxicity models from pluripotent stem cells.
    Medine CN; Lucendo-Villarin B; Storck C; Wang F; Szkolnicka D; Khan F; Pernagallo S; Black JR; Marriage HM; Ross JA; Bradley M; Iredale JP; Flint O; Hay DC
    Stem Cells Transl Med; 2013 Jul; 2(7):505-9. PubMed ID: 23757504
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stem-cell derived hepatocyte-like cells for the assessment of drug-induced liver injury.
    Donato MT; Tolosa L
    Differentiation; 2019; 106():15-22. PubMed ID: 30844688
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Billion-scale production of hepatocyte-like cells from human induced pluripotent stem cells.
    Yamashita T; Takayama K; Sakurai F; Mizuguchi H
    Biochem Biophys Res Commun; 2018 Feb; 496(4):1269-1275. PubMed ID: 29409945
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction of hepatotoxicity for drugs using human pluripotent stem cell-derived hepatocytes.
    Kim JH; Wang M; Lee J; Park HJ; Han C; Hong HS; Kim JS; An GH; Park K; Park HK; Zhu SF; Sun XB; Kim JH; Woo DH
    Cell Biol Toxicol; 2018 Feb; 34(1):51-64. PubMed ID: 28382404
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-dimensional culture of hepatocytes for prediction of drug-induced hepatotoxicity.
    Meng Q
    Expert Opin Drug Metab Toxicol; 2010 Jun; 6(6):733-46. PubMed ID: 20380484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.