These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23228595)

  • 1. Substrate recognition and fidelity of maize seryl-tRNA synthetases.
    Rokov-Plavec J; Lesjak S; Gruic-Sovulj I; Mocibob M; Dulic M; Weygand-Durasevic I
    Arch Biochem Biophys; 2013 Jan; 529(2):122-30. PubMed ID: 23228595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maize seryl-tRNA synthetase: specificity of substrate recognition by the organellar enzyme.
    Rokov-Plavec J; Lesjak S; Landeka I; Mijakovic I; Weygand-Durasevic I
    Arch Biochem Biophys; 2002 Jan; 397(1):40-50. PubMed ID: 11747308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maize mitochondrial seryl-tRNA synthetase recognizes Escherichia coli tRNA(Ser) in vivo and in vitro.
    Rokov J; Söll D; Weygand-Durasević I
    Plant Mol Biol; 1998 Oct; 38(3):497-502. PubMed ID: 9747857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis seryl-tRNA synthetase: the first crystal structure and novel protein interactor of plant aminoacyl-tRNA synthetase.
    Kekez M; Zanki V; Kekez I; Baranasic J; Hodnik V; Duchêne AM; Anderluh G; Gruic-Sovulj I; Matković-Čalogović D; Weygand-Durasevic I; Rokov-Plavec J
    FEBS J; 2019 Feb; 286(3):536-554. PubMed ID: 30570212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. tRNA-dependent amino acid discrimination by yeast seryl-tRNA synthetase.
    Gruic-Sovulj I; Landeka I; Söll D; Weygand-Durasevic I
    Eur J Biochem; 2002 Nov; 269(21):5271-9. PubMed ID: 12392560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fidelity of seryl-tRNA synthetase to binding of natural amino acids from HierDock first principles computations.
    McClendon CL; Vaidehi N; Kam VW; Zhang D; Goddard WA
    Protein Eng Des Sel; 2006 May; 19(5):195-203. PubMed ID: 16517553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into substrate promiscuity of human seryl-tRNA synthetase.
    Holman KM; Puppala AK; Lee JW; Lee H; Simonović M
    RNA; 2017 Nov; 23(11):1685-1699. PubMed ID: 28808125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An idiosyncratic serine ordering loop in methanogen seryl-tRNA synthetases guides substrates through seryl-tRNASer formation.
    Dulic M; Pozar J; Bilokapic S; Weygand-Durasevic I; Gruic-Sovulj I
    Biochimie; 2011 Oct; 93(10):1761-9. PubMed ID: 21704670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural flexibility of the methanogenic-type seryl-tRNA synthetase active site and its implication for specific substrate recognition.
    Bilokapic S; Rokov Plavec J; Ban N; Weygand-Durasevic I
    FEBS J; 2008 Jun; 275(11):2831-44. PubMed ID: 18422966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The proximal region of a noncatalytic eukaryotic seryl-tRNA synthetase extension is required for protein stability in vitro and in vivo.
    Mocibob M; Weygand-Durasevic I
    Arch Biochem Biophys; 2008 Feb; 470(2):129-38. PubMed ID: 18067851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolysis of non-cognate aminoacyl-adenylates by a class II aminoacyl-tRNA synthetase lacking an editing domain.
    Gruic-Sovulj I; Rokov-Plavec J; Weygand-Durasevic I
    FEBS Lett; 2007 Oct; 581(26):5110-4. PubMed ID: 17931630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superposition of a tRNASer acceptor stem microhelix into the seryl-tRNA synthetase complex.
    Förster C; Brauer AB; Fürste JP; Betzel Ch; Weber M; Cordes F; Erdmann VA
    Biochem Biophys Res Commun; 2007 Oct; 362(2):415-8. PubMed ID: 17719008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition between tRNASer and archaeal seryl-tRNA synthetases monitored by suppression of bacterial amber mutations.
    Lesjak S; Weygand-Durasevic I
    FEMS Microbiol Lett; 2009 May; 294(1):111-8. PubMed ID: 19309487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic and editing reactions of aminoacyl-tRNA synthetases using cognate and non-cognate amino acid substrates.
    Cvetesic N; Gruic-Sovulj I
    Methods; 2017 Jan; 113():13-26. PubMed ID: 27713080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of yeast seryl-tRNA synthetase active site mutants with improved discrimination against substrate analogues.
    Landeka I; Filipic-Rocak S; Zinic B; Weygand-Durasevic I
    Biochim Biophys Acta; 2000 Jul; 1480(1-2):160-70. PubMed ID: 11004561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seryl-tRNA synthetase is not responsible for the evolution of CUG codon reassignment in Candida albicans.
    O'Sullivan JM; Mihr MJ; Santos MA; Tuite MF
    Yeast; 2001 Mar; 18(4):313-22. PubMed ID: 11223940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual mode recognition of two isoacceptor tRNAs by mammalian mitochondrial seryl-tRNA synthetase.
    Shimada N; Suzuki T; Watanabe K
    J Biol Chem; 2001 Dec; 276(50):46770-8. PubMed ID: 11577083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm.
    Ohama T; Yang DC; Hatfield DL
    Arch Biochem Biophys; 1994 Dec; 315(2):293-301. PubMed ID: 7986071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual targeting of organellar seryl-tRNA synthetase to maize mitochondria and chloroplasts.
    Rokov-Plavec J; Dulic M; Duchêne AM; Weygand-Durasevic I
    Plant Cell Rep; 2008 Jul; 27(7):1157-68. PubMed ID: 18392626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shuffling of discrete tRNASer regions reveals differently utilized identity elements in yeast and methanogenic archaea.
    Gruic-Sovulj I; Jaric J; Dulic M; Cindric M; Weygand-Durasevic I
    J Mol Biol; 2006 Aug; 361(1):128-39. PubMed ID: 16822522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.