BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23229109)

  • 1. High-resolution dynamic computer simulation analysis of the behavior of sample components with pI values outside the pH gradient established by carrier ampholyte CIEF.
    Thormann W; Kilár F
    Electrophoresis; 2013 Mar; 34(5):716-24. PubMed ID: 23229109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of formation and prevention of a pure water zone in capillary isoelectric focusing with narrow pH range carrier ampholytes.
    Takácsi-Nagy A; Kilár F; Thormann W
    Electrophoresis; 2017 Mar; 38(5):677-688. PubMed ID: 27699824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution computer simulation of the dynamics of isoelectric focusing using carrier ampholytes: focusing with concurrent electrophoretic mobilization is an isotachophoretic process.
    Thormann W; Mosher RA
    Electrophoresis; 2006 Mar; 27(5-6):968-83. PubMed ID: 16523465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of electrolyte pH on CIEF with narrow pH range ampholytes.
    Páger C; Vargová A; Takácsi-Nagy A; Dörnyei Á; Kilár F
    Electrophoresis; 2012 Nov; 33(22):3269-75. PubMed ID: 23086725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sampling strategies for capillary isoelectric focusing with electroosmotic zone mobilization assessed by high-resolution dynamic computer simulation.
    Takácsi-Nagy A; Kilár F; Páger C; Mosher RA; Thormann W
    Electrophoresis; 2012 Mar; 33(6):970-80. PubMed ID: 22655305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instabilities of the pH gradient in carrier ampholyte-based isoelectric focusing: Elucidation of the contributing electrokinetic processes by computer simulation.
    Thormann W; Mosher RA
    Electrophoresis; 2021 Apr; 42(7-8):814-833. PubMed ID: 33184847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution computer simulation of the dynamics of isoelectric focusing: in quest of more realistic input parameters for carrier ampholytes.
    Mosher RA; Thormann W
    Electrophoresis; 2008 Mar; 29(5):1036-47. PubMed ID: 18219653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential injection setup for capillary isoelectric focusing combined with MS detection.
    Páger C; Dörnyei A; Kilár F
    Electrophoresis; 2011 Jul; 32(14):1875-84. PubMed ID: 21769892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the operational pH value of a buffering membrane by an isoelectric trapping separation of a carrier ampholyte mixture.
    North RY; Vigh G
    Electrophoresis; 2008 Mar; 29(5):1077-81. PubMed ID: 18271066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carrier ampholytes rehabilitated: gel isoelectric focusing on pH gradients visualized in real-time by automated fluorescence scanning in the HPGE-1000 apparatus.
    Gombocz E; Cortez E
    Electrophoresis; 1999 Jun; 20(7):1365-72. PubMed ID: 10424457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peak identification in capillary isoelectric focusing using the concept of relative peak position as determined by two isoelectric point markers.
    Wu J; Huang T
    Electrophoresis; 2006 Sep; 27(18):3584-90. PubMed ID: 16927345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the pH gradient formation and cathodic drift in microchip isoelectric focusing with imaged UV detection.
    Xu Z; Okabe N; Arai A; Hirokawa T
    Electrophoresis; 2010 Oct; 31(21):3558-65. PubMed ID: 20925054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of pH adjusted electrolytes on capillary isoelectric focusing assessed by high-resolution dynamic computer simulation.
    Takácsi-Nagy A; Kilár F; Thormann W
    Electrophoresis; 2022 Mar; 43(5-6):669-678. PubMed ID: 34894352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution computer simulation of electrophoretic mobilization in isoelectric focusing.
    Thormann W; Mosher RA
    Electrophoresis; 2008 Apr; 29(8):1676-86. PubMed ID: 18383018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the theoretical description of the isoelectric focusing experiment: II. An open system isoelectric focusing experiment is a transient, bidirectional isotachophoretic experiment.
    Vigh G; Gaš B
    Electrophoresis; 2023 Apr; 44(7-8):675-688. PubMed ID: 36641504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic study in CIEF: defining and optimizing experimental parameters critical to method reproducibility and robustness.
    Mack S; Cruzado-Park I; Chapman J; Ratnayake C; Vigh G
    Electrophoresis; 2009 Dec; 30(23):4049-58. PubMed ID: 19960469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of the theoretical description of the isoelectric focusing experiment: I. The path from Svensson's steady-state model to the current two-stage model of isoelectric focusing.
    Vigh G; Gas B
    Electrophoresis; 2023 Apr; 44(7-8):667-674. PubMed ID: 36640145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoretic mobilization in capillary isoelectric focusing by a weak acid or an acidic ampholyte as catholyte assessed by computer simulation.
    Thormann W
    Electrophoresis; 2023 Apr; 44(7-8):656-666. PubMed ID: 36448503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoelectric buffers, part 3: determination of pKa and pI values of diamino sulfate carrier ampholytes by indirect UV-detection capillary electrophoresis.
    Lalwani S; Tutu E; Vigh G
    Electrophoresis; 2005 Jun; 26(13):2503-10. PubMed ID: 15937983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing.
    Thormann W; Caslavska J; Mosher RA
    J Chromatogr A; 2007 Jul; 1155(2):154-63. PubMed ID: 17307189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.