These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23229112)
1. Characterizing the effects of the protein environment on the reduction potentials of metalloproteins. Perrin BS; Ichiye T J Biol Inorg Chem; 2013 Jan; 18(1):103-10. PubMed ID: 23229112 [TBL] [Abstract][Full Text] [Related]
2. What Are We Missing by Not Measuring the Net Charge of Proteins? Zahler CT; Shaw BF Chemistry; 2019 Jun; 25(32):7581-7590. PubMed ID: 30779227 [TBL] [Abstract][Full Text] [Related]
3. Direct Measurement of Charge Regulation in Metalloprotein Electron Transfer. Zahler CT; Zhou H; Abdolvahabi A; Holden RL; Rasouli S; Tao P; Shaw BF Angew Chem Int Ed Engl; 2018 May; 57(19):5364-5368. PubMed ID: 29451960 [TBL] [Abstract][Full Text] [Related]
4. Fold versus sequence effects on the driving force for protein-mediated electron transfer. Perrin BS; Ichiye T Proteins; 2010 Oct; 78(13):2798-808. PubMed ID: 20635418 [TBL] [Abstract][Full Text] [Related]
5. Incorporating electron-transfer functionality into synthetic metalloproteins from the bottom-up. Hong J; Kharenko OA; Ogawa MY Inorg Chem; 2006 Dec; 45(25):9974-84. PubMed ID: 17140193 [TBL] [Abstract][Full Text] [Related]
6. Combined use of XAFS and crystallography for studying protein-ligand interactions in metalloproteins. Strange RW; Hasnain SS Methods Mol Biol; 2005; 305():167-96. PubMed ID: 15939998 [TBL] [Abstract][Full Text] [Related]
7. Enthalpy/entropy compensation phenomena in the reduction thermodynamics of electron transport metalloproteins. Battistuzzi G; Borsari M; Di Rocco G; Ranieri A; Sola M J Biol Inorg Chem; 2004 Jan; 9(1):23-6. PubMed ID: 14586786 [TBL] [Abstract][Full Text] [Related]
8. On the role of strain in blue copper proteins. Ryde U; Olsson MH; Roos BO; De Kerpel JO; Pierloot K J Biol Inorg Chem; 2000 Oct; 5(5):565-74. PubMed ID: 11085647 [TBL] [Abstract][Full Text] [Related]
9. Correlation of rhombic distortion of the type 1 copper site of M98Q amicyanin with increased electron transfer reorganization energy. Ma JK; Mathews FS; Davidson VL Biochemistry; 2007 Jul; 46(29):8561-8. PubMed ID: 17602663 [TBL] [Abstract][Full Text] [Related]
10. Importance of polarization effect in the study of metalloproteins: application of polarized protein specific charge scheme in predicting the reduction potential of azurin. Wei C; Lazim R; Zhang D Proteins; 2014 Sep; 82(9):2209-19. PubMed ID: 24753270 [TBL] [Abstract][Full Text] [Related]
11. An approach to long-range electron transfer mechanisms in metalloproteins: in situ scanning tunneling microscopy with submolecular resolution. Friis EP; Andersen JE; Kharkats YI; Kuznetsov AM; Nichols RJ; Zhang JD; Ulstrup J Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1379-84. PubMed ID: 9990032 [TBL] [Abstract][Full Text] [Related]
12. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin. Paraskevopoulos K; Sundararajan M; Surendran R; Hough MA; Eady RR; Hillier IH; Hasnain SS Dalton Trans; 2006 Jul; (25):3067-76. PubMed ID: 16786065 [TBL] [Abstract][Full Text] [Related]
13. Crystallographic investigation of the role of aspartate 95 in the modulation of the redox potentials of Desulfovibrio vulgaris flavodoxin. McCarthy AA; Walsh MA; Verma CS; O'Connell DP; Reinhold M; Yalloway GN; D'Arcy D; Higgins TM; Voordouw G; Mayhew SG Biochemistry; 2002 Sep; 41(36):10950-62. PubMed ID: 12206666 [TBL] [Abstract][Full Text] [Related]
14. Energy saving electron pathways in proteins. Larsson S J Biol Inorg Chem; 2000 Oct; 5(5):560-4. PubMed ID: 11085646 [TBL] [Abstract][Full Text] [Related]
16. Combined quantum and molecular mechanics calculations on metalloproteins. Ryde U Curr Opin Chem Biol; 2003 Feb; 7(1):136-42. PubMed ID: 12547438 [TBL] [Abstract][Full Text] [Related]
17. On the energetics of conformational changes and pH dependent redox behaviour of electron transfer proteins. Rogers NK; Moore GR FEBS Lett; 1988 Feb; 228(1):69-73. PubMed ID: 2830136 [TBL] [Abstract][Full Text] [Related]
18. Protein control of electron transfer rates via polarization: molecular dynamics studies of rubredoxin. Dolan EA; Yelle RB; Beck BW; Fischer JT; Ichiye T Biophys J; 2004 Apr; 86(4):2030-6. PubMed ID: 15041645 [TBL] [Abstract][Full Text] [Related]
19. Structure of the M148Q mutant of rusticyanin at 1.5 A: a model for the copper site of stellacyanin. Hough MA; Hall JF; Kanbi LD; Hasnain SS Acta Crystallogr D Biol Crystallogr; 2001 Mar; 57(Pt 3):355-60. PubMed ID: 11223511 [TBL] [Abstract][Full Text] [Related]
20. Blue copper proteins: a comparative analysis of their molecular interaction properties. De Rienzo F; Gabdoulline RR; Menziani MC; Wade RC Protein Sci; 2000 Aug; 9(8):1439-54. PubMed ID: 10975566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]