BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 23229281)

  • 1. High wall shear stress and spatial gradients in vascular pathology: a review.
    Dolan JM; Kolega J; Meng H
    Ann Biomed Eng; 2013 Jul; 41(7):1411-27. PubMed ID: 23229281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment.
    Dolan JM; Meng H; Singh S; Paluch R; Kolega J
    Ann Biomed Eng; 2011 Jun; 39(6):1620-31. PubMed ID: 21312062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress.
    Dolan JM; Meng H; Sim FJ; Kolega J
    Am J Physiol Cell Physiol; 2013 Oct; 305(8):C854-66. PubMed ID: 23885059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wall shear stress gradient is independently associated with middle cerebral artery aneurysm development: a case-control CFD patient-specific study based on 77 patients.
    Zimny M; Kawlewska E; Hebda A; Wolański W; Ładziński P; Kaspera W
    BMC Neurol; 2021 Jul; 21(1):281. PubMed ID: 34281533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of aneurysmogenic high positive wall shear stress gradient by wide angle at cerebral bifurcations, independent of flow rate.
    Lauric A; Hippelheuser JE; Malek AM
    J Neurosurg; 2018 Aug; 131(2):442-452. PubMed ID: 30095336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wall shear stress at the initiation site of cerebral aneurysms.
    Geers AJ; Morales HG; Larrabide I; Butakoff C; Bijlenga P; Frangi AF
    Biomech Model Mechanobiol; 2017 Feb; 16(1):97-115. PubMed ID: 27440126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of main branch stenting on endothelial shear stress: role of side branch diameter, angle and lesion.
    Chen HY; Moussa ID; Davidson C; Kassab GS
    J R Soc Interface; 2012 Jun; 9(71):1187-93. PubMed ID: 22112654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms.
    Frösen J; Cebral J; Robertson AM; Aoki T
    Neurosurg Focus; 2019 Jul; 47(1):E21. PubMed ID: 31261126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proximal stenosis may induce initiation of cerebral aneurysms by increasing wall shear stress and wall shear stress gradient.
    Kono K; Fujimoto T; Terada T
    Int J Numer Method Biomed Eng; 2014 Oct; 30(10):942-50. PubMed ID: 24706583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of hemodynamics in initiation/growth of intracranial aneurysms.
    Diagbouga MR; Morel S; Bijlenga P; Kwak BR
    Eur J Clin Invest; 2018 Sep; 48(9):e12992. PubMed ID: 29962043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Diverse Hemodynamic Forces, a Mechanical Stretch and a High Wall Shear Stress, Determine Intracranial Aneurysm Formation.
    Koseki H; Miyata H; Shimo S; Ohno N; Mifune K; Shimano K; Yamamoto K; Nozaki K; Kasuya H; Narumiya S; Aoki T
    Transl Stroke Res; 2020 Feb; 11(1):80-92. PubMed ID: 30737656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation.
    Szymanski MP; Metaxa E; Meng H; Kolega J
    Ann Biomed Eng; 2008 Oct; 36(10):1681-9. PubMed ID: 18654851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular alterations associated with aneurysmal remodeling are localized in the high hemodynamic stress region of a created carotid bifurcation.
    Wang Z; Kolega J; Hoi Y; Gao L; Swartz DD; Levy EI; Mocco J; Meng H
    Neurosurgery; 2009 Jul; 65(1):169-77; discussion 177-8. PubMed ID: 19574839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Analysis of Bifurcation Angles and Branch Patterns in Intracranial Aneurysm Formation.
    Sasaki T; Kakizawa Y; Yoshino M; Fujii Y; Yoroi I; Ichikawa Y; Horiuchi T; Hongo K
    Neurosurgery; 2019 Jul; 85(1):E31-E39. PubMed ID: 30137458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses.
    O'Keeffe LM; Muir G; Piterina AV; McGloughlin T
    J Biomech Eng; 2009 Aug; 131(8):081003. PubMed ID: 19604015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the co-localization of magnitude-based versus direction-based indicators of disturbed shear at the carotid bifurcation.
    Gallo D; Steinman DA; Morbiducci U
    J Biomech; 2016 Aug; 49(12):2413-9. PubMed ID: 26900036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atherosclerotic indicators for blood-like fluids in 90-degree arterial-like bifurcations.
    van Wyk S; Prahl Wittberg L; Fuchs L
    Comput Biol Med; 2014 Jul; 50():56-69. PubMed ID: 24835086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The critical role of hemodynamics in the development of cerebral vascular disease.
    Nixon AM; Gunel M; Sumpio BE
    J Neurosurg; 2010 Jun; 112(6):1240-53. PubMed ID: 19943737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P; Bagchi P
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.