These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23230846)

  • 1. Novel quantitative TaqMan real-time PCR assays for detection of Cryptosporidium at the genus level and genotyping of major human and cattle-infecting species.
    Burnet JB; Ogorzaly L; Tissier A; Penny C; Cauchie HM
    J Appl Microbiol; 2013 Apr; 114(4):1211-22. PubMed ID: 23230846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Evaluation of Three Real-Time PCR Assays for Genotyping and Source Tracking Cryptosporidium spp. in Water.
    Li N; Neumann NF; Ruecker N; Alderisio KA; Sturbaum GD; Villegas EN; Chalmers R; Monis P; Feng Y; Xiao L
    Appl Environ Microbiol; 2015 Sep; 81(17):5845-54. PubMed ID: 26092455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive and specific detection of Cryptosporidium species in PCR-negative samples by loop-mediated isothermal DNA amplification and confirmation of generated LAMP products by sequencing.
    Bakheit MA; Torra D; Palomino LA; Thekisoe OM; Mbati PA; Ongerth J; Karanis P
    Vet Parasitol; 2008 Nov; 158(1-2):11-22. PubMed ID: 18940521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and differentiation of Cryptosporidium hominis and Cryptosporidium parvum by dual TaqMan assays.
    Jothikumar N; da Silva AJ; Moura I; Qvarnstrom Y; Hill VR
    J Med Microbiol; 2008 Sep; 57(Pt 9):1099-1105. PubMed ID: 18719179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific and quantitative detection and identification of Cryptosporidium hominis and C. parvum in clinical and environmental samples.
    Yang R; Murphy C; Song Y; Ng-Hublin J; Estcourt A; Hijjawi N; Chalmers R; Hadfield S; Bath A; Gordon C; Ryan U
    Exp Parasitol; 2013 Sep; 135(1):142-7. PubMed ID: 23838581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A whole water catchment approach to investigating the origin and distribution of Cryptosporidium species.
    Robinson G; Chalmers RM; Stapleton C; Palmer SR; Watkins J; Francis C; Kay D
    J Appl Microbiol; 2011 Sep; 111(3):717-30. PubMed ID: 21649804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicentric evaluation of a new real-time PCR assay for quantification of Cryptosporidium spp. and identification of Cryptosporidium parvum and Cryptosporidium hominis.
    Mary C; Chapey E; Dutoit E; Guyot K; Hasseine L; Jeddi F; Menotti J; Paraud C; Pomares C; Rabodonirina M; Rieux A; Derouin F;
    J Clin Microbiol; 2013 Aug; 51(8):2556-63. PubMed ID: 23720792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and differentiation of Cryptosporidium by real-time polymerase chain reaction in stool samples from patients in Rio de Janeiro, Brazil.
    Rolando RF; Silva Sd; Peralta RH; Silva AJ; Cunha Fde S; Bello AR; Peralta JM
    Mem Inst Oswaldo Cruz; 2012 Jun; 107(4):476-9. PubMed ID: 22666857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal prevalence, oocyst shedding and molecular characterisation of Cryptosporidium species in sheep across four states in Australia.
    Yang R; Jacobson C; Gardner G; Carmichael I; Campbell AJ; Ng-Hublin J; Ryan U
    Vet Parasitol; 2014 Feb; 200(1-2):50-8. PubMed ID: 24332963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two novel genomic DNA sequences as common diagnostic targets to detect
    Shrivastava AK; Panda S; Kumar S; Sahu PS
    Indian J Med Microbiol; 2020; 38(3 & 4):430-439. PubMed ID: 33154258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of Cryptosporidium spp. in pre-weaned dairy calves in the Czech Republic: absence of C. ryanae and management-associated distribution of C. andersoni, C. bovis and C. parvum subtypes.
    Kváč M; Hromadová N; Květoňová D; Rost M; Sak B
    Vet Parasitol; 2011 May; 177(3-4):378-82. PubMed ID: 21168973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation of primers amplifying DNA targets for the detection of Cryptosporidium spp. using C. parvum HNJ-1 Japanese isolate in water samples.
    Leetz AS; Sotiriadou I; Ongerth J; Karanis P
    Parasitol Res; 2007 Sep; 101(4):951-62. PubMed ID: 17514380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts.
    Hønsvall BK; Robertson LJ
    Exp Parasitol; 2017 Jan; 172():61-67. PubMed ID: 27998735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of bovine Cryptosporidium isolated from diarrheic calves in the Sudan.
    Taha S; Elmalik K; Bangoura B; Lendner M; Mossaad E; Daugschies A
    Parasitol Res; 2017 Nov; 116(11):2971-2979. PubMed ID: 28900722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence and molecular identification of Cryptosporidium species isolated from cattle in Poland.
    Rzeżutka A; Kaupke A
    Vet Parasitol; 2013 Sep; 196(3-4):301-6. PubMed ID: 23566407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of a fragment size analysis tool for identification of Cryptosporidium species and Gp60 alleles infecting domestic ruminants.
    Ramo A; Quílez J; Del Cacho E; Sánchez-Acedo C
    Vet Parasitol; 2014 Oct; 205(3-4):466-71. PubMed ID: 25224787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new set of primers directed to 18S rRNA gene for molecular identification of Cryptosporidium spp. and their performance in the detection and differentiation of oocysts shed by synanthropic rodents.
    Silva SO; Richtzenhain LJ; Barros IN; Gomes AM; Silva AV; Kozerski ND; de Araújo Ceranto JB; Keid LB; Soares RM
    Exp Parasitol; 2013 Nov; 135(3):551-7. PubMed ID: 24036321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of methods for improved detection of Cryptosporidium spp. in mussels (Mytilus californianus).
    Miller WA; Gardner IA; Atwill ER; Leutenegger CM; Miller MA; Hedrick RP; Melli AC; Barnes NM; Conrad PA
    J Microbiol Methods; 2006 Jun; 65(3):367-79. PubMed ID: 16181691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and differentiation of Cryptosporidium oocysts in water by PCR-RFLP.
    Xiao L; Lal AA; Jiang J
    Methods Mol Biol; 2004; 268():163-76. PubMed ID: 15156028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples.
    Yang R; Paparini A; Monis P; Ryan U
    Int J Parasitol; 2014 Dec; 44(14):1105-13. PubMed ID: 25229177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.