These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 23231028)
1. Silver nanoparticles coated with thioxanthone derivative as hybrid photoinitiating systems for free radical polymerization. Nehlig E; Schneider R; Vidal L; Clavier G; Balan L Langmuir; 2012 Dec; 28(51):17795-802. PubMed ID: 23231028 [TBL] [Abstract][Full Text] [Related]
2. Poly(vinyl alcohol)-Thioxanthone as One-Component Type II Photoinitiator for Free Radical Polymerization in Organic and Aqueous Media. Kork S; Yilmaz G; Yagci Y Macromol Rapid Commun; 2015 May; 36(10):923-8. PubMed ID: 25855091 [TBL] [Abstract][Full Text] [Related]
3. One-component thioxanthone acetic acid derivative photoinitiator for free radical polymerization. Esen DS; Temel G; Balta DK; Allonas X; Arsu N Photochem Photobiol; 2014; 90(2):463-9. PubMed ID: 24372104 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities. Ni Z; Wang Z; Sun L; Li B; Zhao Y Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():249-54. PubMed ID: 24907758 [TBL] [Abstract][Full Text] [Related]
5. High fluorescence emission silver nano particles coated with poly (styrene-g-soybean oil) graft copolymers: Antibacterial activity and polymerization kinetics. Hazer B; Kalaycı ÖA Mater Sci Eng C Mater Biol Appl; 2017 May; 74():259-269. PubMed ID: 28254293 [TBL] [Abstract][Full Text] [Related]
6. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system. Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277 [TBL] [Abstract][Full Text] [Related]
7. In situ approach induced growth of highly monodispersed Ag nanoparticles within free standing PVA/PVP films. Eisa WH; Abdel-Moneam YK; Shabaka AA; Hosam AE Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():341-6. PubMed ID: 22542688 [TBL] [Abstract][Full Text] [Related]
9. Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process. Chen M; Wang LY; Han JT; Zhang JY; Li ZY; Qian DJ J Phys Chem B; 2006 Jun; 110(23):11224-31. PubMed ID: 16771388 [TBL] [Abstract][Full Text] [Related]
10. Green synthesis and characterization of polymer-stabilized silver nanoparticles. Medina-Ramirez I; Bashir S; Luo Z; Liu JL Colloids Surf B Biointerfaces; 2009 Oct; 73(2):185-91. PubMed ID: 19539451 [TBL] [Abstract][Full Text] [Related]
11. Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Tamboli MS; Kulkarni MV; Patil RH; Gade WN; Navale SC; Kale BB Colloids Surf B Biointerfaces; 2012 Apr; 92():35-41. PubMed ID: 22178182 [TBL] [Abstract][Full Text] [Related]
12. Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process. Kumar V; Jolivalt C; Pulpytel J; Jafari R; Arefi-Khonsari F J Biomed Mater Res A; 2013 Apr; 101(4):1121-32. PubMed ID: 23015534 [TBL] [Abstract][Full Text] [Related]
13. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Sadeghi B; Rostami A; Momeni SS Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():326-32. PubMed ID: 25022505 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, evaluation and preliminary antibacterial testing of hybrid composites based on urethane oligodimethacrylates and Ag nanoparticles. Buruiana T; Melinte V; Chibac A; Matiut S; Balan L J Biomater Sci Polym Ed; 2012; 23(7):955-72. PubMed ID: 21457621 [TBL] [Abstract][Full Text] [Related]
15. In situ synthesis and characterization of silver/polymer nanocomposites by thermal cationic polymerization processes at room temperature: initiating systems based on organosilanes and starch nanocrystals. Tehfe MA; Jamois R; Cousin P; Elkoun S; Robert M Langmuir; 2015 Apr; 31(14):4305-13. PubMed ID: 25793620 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of methylcellulose-silver nanocomposite and investigation of mechanical and antimicrobial properties. Maity D; Mollick MM; Mondal D; Bhowmick B; Bain MK; Bankura K; Sarkar J; Acharya K; Chattopadhyay D Carbohydr Polym; 2012 Nov; 90(4):1818-25. PubMed ID: 22944452 [TBL] [Abstract][Full Text] [Related]
18. Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. Rajasekharreddy P; Rani PU Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():203-12. PubMed ID: 24863217 [TBL] [Abstract][Full Text] [Related]
19. Optical, structural and morphological properties of silver nanoparticles and its influence on the photocatalytic activity of TiO2. Umadevi M; Jegatha Christy A Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():80-5. PubMed ID: 23608130 [TBL] [Abstract][Full Text] [Related]
20. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Mohan S; Oluwafemi OS; George SC; Jayachandran VP; Lewu FB; Songca SP; Kalarikkal N; Thomas S Carbohydr Polym; 2014 Jun; 106():469-74. PubMed ID: 24721103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]