These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 23231218)

  • 1. Step free energies at faceted solid-liquid interfaces from equilibrium molecular dynamics simulations.
    Frolov T; Asta M
    J Chem Phys; 2012 Dec; 137(21):214108. PubMed ID: 23231218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic coefficient of steps at the Si(111) crystal-melt interface from molecular dynamics simulations.
    Buta D; Asta M; Hoyt JJ
    J Chem Phys; 2007 Aug; 127(7):074703. PubMed ID: 17718623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleation of tetrahedral solids: A molecular dynamics study of supercooled liquid silicon.
    Li T; Donadio D; Galli G
    J Chem Phys; 2009 Dec; 131(22):224519. PubMed ID: 20001069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal-melt interface stresses: atomistic simulation calculations for a Lennard-Jones binary alloy, Stillinger-Weber Si, and embedded atom method Ni.
    Becker CA; Hoyt JJ; Buta D; Asta M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061610. PubMed ID: 17677276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase field theory of interfaces and crystal nucleation in a eutectic system of fcc structure: I. Transitions in the one-phase liquid region.
    Tóth GI; Gránásy L
    J Chem Phys; 2007 Aug; 127(7):074709. PubMed ID: 17718629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of solid-liquid interfacial free energy: a classical nucleation theory based approach.
    Bai XM; Li M
    J Chem Phys; 2006 Mar; 124(12):124707. PubMed ID: 16599718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-liquid interface free energy in binary systems: theory and atomistic calculations for the (110) Cu-Ag interface.
    Frolov T; Mishin Y
    J Chem Phys; 2009 Aug; 131(5):054702. PubMed ID: 19673580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous nucleation and growth of melt in copper.
    Zheng L; An Q; Xie Y; Sun Z; Luo SN
    J Chem Phys; 2007 Oct; 127(16):164503. PubMed ID: 17979356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial excess free energies of solid-liquid interfaces by molecular dynamics simulation and thermodynamic integration.
    Leroy F; Dos Santos DJ; Müller-Plathe F
    Macromol Rapid Commun; 2009 May; 30(9-10):864-70. PubMed ID: 21706670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulation of fluid-solid interfaces at nanoscale.
    Ould-Kaddour F; Levesque D
    J Chem Phys; 2011 Dec; 135(22):224705. PubMed ID: 22168717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonequilibrium melting and crystallization of a model Lennard-Jones system.
    Luo SN; Strachan A; Swift DC
    J Chem Phys; 2004 Jun; 120(24):11640-9. PubMed ID: 15268198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface tensions in NaCl-water-air systems from MD simulations.
    Bahadur R; Russell LM; Alavi S
    J Phys Chem B; 2007 Oct; 111(41):11989-96. PubMed ID: 17894485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-field crystal model with a vapor phase.
    Schwalbach EJ; Warren JA; Wu KA; Voorhees PW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023306. PubMed ID: 24032965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of vapor-liquid coexistence in finite volumes: a method to compute the surface free energy of droplets.
    Schrader M; Virnau P; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061104. PubMed ID: 19658470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomistic simulation of solid-liquid coexistence for molecular systems: application to triazole and benzene.
    Eike DM; Maginn EJ
    J Chem Phys; 2006 Apr; 124(16):164503. PubMed ID: 16674142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum path-integral study of the phase diagram and isotope effects of neon.
    Ramírez R; Herrero CP
    J Chem Phys; 2008 Nov; 129(20):204502. PubMed ID: 19045868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Path integral calculation of free energies: quantum effects on the melting temperature of neon.
    Ramírez R; Herrero CP; Antonelli A; Hernández ER
    J Chem Phys; 2008 Aug; 129(6):064110. PubMed ID: 18715054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic simulation study of the structure and dynamics of a faceted crystal-melt interface.
    Buta D; Asta M; Hoyt JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031605. PubMed ID: 18851047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of partition functions and free energies of a binary mixture using the energy partitioning method: application to carbon dioxide and methane.
    Do H; Hirst JD; Wheatley RJ
    J Phys Chem B; 2012 Apr; 116(15):4535-42. PubMed ID: 22420825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.