BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23231276)

  • 1. Comprehensive assessment of the slice sensitivity profiles in breast tomosynthesis and breast CT.
    Nosratieh A; Yang K; Aminololama-Shakeri S; Boone JM
    Med Phys; 2012 Dec; 39(12):7254-61. PubMed ID: 23231276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation and evaluation of an expectation maximization reconstruction algorithm for gamma emission breast tomosynthesis.
    Gong Z; Klanian K; Patel T; Sullivan O; Williams MB
    Med Phys; 2012 Dec; 39(12):7580-92. PubMed ID: 23231306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The quantitative potential for breast tomosynthesis imaging.
    Shafer CM; Samei E; Lo JY
    Med Phys; 2010 Mar; 37(3):1004-16. PubMed ID: 20384236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.
    Qian X; Tucker A; Gidcumb E; Shan J; Yang G; Calderon-Colon X; Sultana S; Lu J; Zhou O; Spronk D; Sprenger F; Zhang Y; Kennedy D; Farbizio T; Jing Z
    Med Phys; 2012 Apr; 39(4):2090-9. PubMed ID: 22482630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital breast tomosynthesis: observer performance of clustered microcalcification detection on breast phantom images acquired with an experimental system using variable scan angles, angular increments, and number of projection views.
    Chan HP; Goodsitt MM; Helvie MA; Zelakiewicz S; Schmitz A; Noroozian M; Paramagul C; Roubidoux MA; Nees AV; Neal CH; Carson P; Lu Y; Hadjiiski L; Wei J
    Radiology; 2014 Dec; 273(3):675-85. PubMed ID: 25007048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative imaging in breast tomosynthesis and CT: comparison of detection and estimation task performance.
    Richard S; Samei E
    Med Phys; 2010 Jun; 37(6):2627-37. PubMed ID: 20632574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis.
    Zhang Y; Chan HP; Sahiner B; Wei J; Goodsitt MM; Hadjiiski LM; Ge J; Zhou C
    Med Phys; 2006 Oct; 33(10):3781-95. PubMed ID: 17089843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oblique reconstructions in tomosynthesis. I. Linear systems theory.
    Acciavatti RJ; Maidment AD
    Med Phys; 2013 Nov; 40(11):111911. PubMed ID: 24320444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of reconstruction algorithms for C-arm mammography tomosynthesis.
    Rakowski JT; Dennis MJ
    Med Phys; 2006 Aug; 33(8):3018-32. PubMed ID: 16964880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system.
    Rodrigues L; Magalhaes LA; Braz D
    Radiat Prot Dosimetry; 2015 Dec; 167(4):576-83. PubMed ID: 25480841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of slice sensitivity profile for radiographic tomosynthesis.
    Li B; Avinash GB; Eberhard JW; Claus BE
    Med Phys; 2007 Jul; 34(7):2907-16. PubMed ID: 17821999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental validation of a three-dimensional linear system model for breast tomosynthesis.
    Zhao B; Zhou J; Hu YH; Mertelmeier T; Ludwig J; Zhao W
    Med Phys; 2009 Jan; 36(1):240-51. PubMed ID: 19235392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of the acquisition geometry in digital tomosynthesis of the breast.
    Sechopoulos I; Ghetti C
    Med Phys; 2009 Apr; 36(4):1199-207. PubMed ID: 19472626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Case for Wide-Angle Breast Tomosynthesis.
    Samei E; Thompson J; Richard S; Bowsher J
    Acad Radiol; 2015 Jul; 22(7):860-9. PubMed ID: 25920335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer modeling of the spatial resolution properties of a dedicated breast CT system.
    Yang K; Kwan AL; Boone JM
    Med Phys; 2007 Jun; 34(6):2059-69. PubMed ID: 17654909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of configuration parameters in a newly developed digital breast tomosynthesis system.
    Park HS; Kim YS; Kim HJ; Choi YW; Choi JG
    J Radiat Res; 2014 May; 55(3):589-99. PubMed ID: 24297999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of scatter effects on image quality for breast tomosynthesis.
    Wu G; Mainprize JG; Boone JM; Yaffe MJ
    Med Phys; 2009 Oct; 36(10):4425-32. PubMed ID: 19928073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial resolution improvement and dose reduction potential for inner ear CT imaging using a z-axis deconvolution technique.
    McCollough CH; Leng S; Sunnegardh J; Vrieze TJ; Yu L; Lane J; Raupach R; Stierstorfer K; Flohr T
    Med Phys; 2013 Jun; 40(6):061904. PubMed ID: 23718595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and characterization of a spatially distributed multibeam field emission x-ray source for stationary digital breast tomosynthesis.
    Qian X; Rajaram R; Calderon-Colon X; Yang G; Phan T; Lalush DS; Lu J; Zhou O
    Med Phys; 2009 Oct; 36(10):4389-99. PubMed ID: 19928069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.