These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 23231284)
1. Assessing the combined performance of texture and morphological parameters in distinguishing breast tumors in ultrasound images. Alvarenga AV; Infantosi AF; Pereira WC; Azevedo CM Med Phys; 2012 Dec; 39(12):7350-8. PubMed ID: 23231284 [TBL] [Abstract][Full Text] [Related]
2. Assessing the performance of morphological parameters in distinguishing breast tumors on ultrasound images. Alvarenga AV; Infantosi AF; Pereira WC; Azevedo CM Med Eng Phys; 2010 Jan; 32(1):49-56. PubMed ID: 19926514 [TBL] [Abstract][Full Text] [Related]
3. Classification of breast tumors using sonographic texture analysis. Ardakani AA; Gharbali A; Mohammadi A J Ultrasound Med; 2015 Feb; 34(2):225-31. PubMed ID: 25614395 [TBL] [Abstract][Full Text] [Related]
4. Complexity curve and grey level co-occurrence matrix in the texture evaluation of breast tumor on ultrasound images. Alvarenga AV; Pereira WC; Infantosi AF; Azevedo CM Med Phys; 2007 Feb; 34(2):379-87. PubMed ID: 17388154 [TBL] [Abstract][Full Text] [Related]
5. Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images. Moon WK; Shen YW; Huang CS; Chiang LR; Chang RF Ultrasound Med Biol; 2011 Apr; 37(4):539-48. PubMed ID: 21420580 [TBL] [Abstract][Full Text] [Related]
6. Computerized lesion segmentation of breast ultrasound based on marker-controlled watershed transformation. Gómez W; Leija L; Alvarenga AV; Infantosi AF; Pereira WC Med Phys; 2010 Jan; 37(1):82-95. PubMed ID: 20175469 [TBL] [Abstract][Full Text] [Related]
7. Bimodal Multiparameter-Based Approach for Benign-Malignant Classification of Breast Tumors. Ara SR; Alam F; Rahman MH; Akhter S; Awwal R; Hasan K Ultrasound Med Biol; 2015 Jul; 41(7):2022-38. PubMed ID: 25913281 [TBL] [Abstract][Full Text] [Related]
8. Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. Joo S; Yang YS; Moon WK; Kim HC IEEE Trans Med Imaging; 2004 Oct; 23(10):1292-300. PubMed ID: 15493696 [TBL] [Abstract][Full Text] [Related]
9. Computer-aided diagnosis with textural features for breast lesions in sonograms. Chen DR; Huang YL; Lin SH Comput Med Imaging Graph; 2011 Apr; 35(3):220-6. PubMed ID: 21131178 [TBL] [Abstract][Full Text] [Related]
10. Computer-aided diagnosis of soft-tissue tumors using sonographic morphologic and texture features. Chen CY; Chiou HJ; Chou SY; Chiou SY; Wang HK; Chou YH; Chiang HK Acad Radiol; 2009 Dec; 16(12):1531-8. PubMed ID: 19896070 [TBL] [Abstract][Full Text] [Related]
11. Segmentation of solid nodules in ultrasonographic breast image based on wavelet transform. Park S; Kong HJ; Moon WK; Kim HC Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5650-3. PubMed ID: 18003294 [TBL] [Abstract][Full Text] [Related]
12. Differentiation of benign and malignant breast lesions: a comparison between automatically generated breast volume scans and handheld ultrasound examinations. Wang HY; Jiang YX; Zhu QL; Zhang J; Dai Q; Liu H; Lai XJ; Sun Q Eur J Radiol; 2012 Nov; 81(11):3190-200. PubMed ID: 22386134 [TBL] [Abstract][Full Text] [Related]
13. Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Shan J; Cheng HD; Wang Y Ultrasound Med Biol; 2012 Feb; 38(2):262-75. PubMed ID: 22230134 [TBL] [Abstract][Full Text] [Related]
14. New Fully Automated Method for Segmentation of Breast Lesions on Ultrasound Based on Texture Analysis. Gómez-Flores W; Ruiz-Ortega BA Ultrasound Med Biol; 2016 Jul; 42(7):1637-50. PubMed ID: 27095150 [TBL] [Abstract][Full Text] [Related]
15. Computer-assisted assessment of ultrasound real-time elastography: initial experience in 145 breast lesions. Zhang X; Xiao Y; Zeng J; Qiu W; Qian M; Wang C; Zheng R; Zheng H Eur J Radiol; 2014 Jan; 83(1):e1-7. PubMed ID: 24148563 [TBL] [Abstract][Full Text] [Related]
16. Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. Madabhushi A; Metaxas DN IEEE Trans Med Imaging; 2003 Feb; 22(2):155-69. PubMed ID: 12715992 [TBL] [Abstract][Full Text] [Related]
17. Computerized characterization of breast masses on three-dimensional ultrasound volumes. Sahiner B; Chan HP; Roubidoux MA; Helvie MA; Hadjiiski LM; Ramachandran A; Paramagul C; LeCarpentier GL; Nees A; Blane C Med Phys; 2004 Apr; 31(4):744-54. PubMed ID: 15124991 [TBL] [Abstract][Full Text] [Related]
18. Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images. Wu WJ; Lin SW; Moon WK Comput Med Imaging Graph; 2012 Dec; 36(8):627-33. PubMed ID: 22939834 [TBL] [Abstract][Full Text] [Related]
19. A new automated method for the segmentation and characterization of breast masses on ultrasound images. Cui J; Sahiner B; Chan HP; Nees A; Paramagul C; Hadjiiski LM; Zhou C; Shi J Med Phys; 2009 May; 36(5):1553-65. PubMed ID: 19544771 [TBL] [Abstract][Full Text] [Related]
20. Computer-aided diagnosis based on speckle patterns in ultrasound images. Moon WK; Lo CM; Huang CS; Chen JH; Chang RF Ultrasound Med Biol; 2012 Jul; 38(7):1251-61. PubMed ID: 22579548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]