These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23231985)

  • 1. Accessing the neural drive to muscle and translation to neurorehabilitation technologies.
    Farina D; Negro F
    IEEE Rev Biomed Eng; 2012; 5():3-14. PubMed ID: 23231985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural Data-Driven Musculoskeletal Modeling for Personalized Neurorehabilitation Technologies.
    Sartori M; Llyod DG; Farina D
    IEEE Trans Biomed Eng; 2016 May; 63(5):879-893. PubMed ID: 27046865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of muscle motor unit innervation process correlation and common drive.
    Jiang N; Parker PA; Englehart KB
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1605-14. PubMed ID: 16916095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blind source identification from the multichannel surface electromyogram.
    Holobar A; Farina D
    Physiol Meas; 2014 Jul; 35(7):R143-65. PubMed ID: 24943407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic Organization of Neural Inputs from Spinal Motor Neurons to Extrinsic and Intrinsic Hand Muscles.
    Tanzarella S; Muceli S; Santello M; Farina D
    J Neurosci; 2021 Aug; 41(32):6878-6891. PubMed ID: 34210782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Common synaptic input to motor neurons, motor unit synchronization, and force control.
    Farina D; Negro F
    Exerc Sport Sci Rev; 2015 Jan; 43(1):23-33. PubMed ID: 25390298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of motoneurons in the generation of muscle spasms after spinal cord injury.
    Gorassini MA; Knash ME; Harvey PJ; Bennett DJ; Yang JF
    Brain; 2004 Oct; 127(Pt 10):2247-58. PubMed ID: 15342360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacing the neural output of the spinal cord: robust and reliable longitudinal identification of motor neurons in humans.
    Vecchio AD; Farina D
    J Neural Eng; 2019 Dec; 17(1):016003. PubMed ID: 31604338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow temporal filtering may largely explain the transformation of stick insect (Carausius morosus) extensor motor neuron activity into muscle movement.
    Hooper SL; Guschlbauer C; von Uckermann G; Büschges A
    J Neurophysiol; 2007 Sep; 98(3):1718-32. PubMed ID: 17625056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial reconstruction of muscle activity from a pruned network of diverse motor cortex neurons.
    Schieber MH; Rivlis G
    J Neurophysiol; 2007 Jan; 97(1):70-82. PubMed ID: 17035361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor control in sleep.
    Morrison AR
    Handb Clin Neurol; 2011; 99():835-49. PubMed ID: 21056231
    [No Abstract]   [Full Text] [Related]  

  • 12. Dynamic neural control of insect muscle metabolism related to motor behavior.
    Pflüger HJ; Duch C
    Physiology (Bethesda); 2011 Aug; 26(4):293-303. PubMed ID: 21841077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimentally valid predictions of muscle force and EMG in models of motor-unit function are most sensitive to neural properties.
    Keenan KG; Valero-Cuevas FJ
    J Neurophysiol; 2007 Sep; 98(3):1581-90. PubMed ID: 17615125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent motor unit rhythms in the 6-10 Hz range during time-varying voluntary muscle contractions: neural mechanism and relation to rhythmical motor control.
    Erimaki S; Christakos CN
    J Neurophysiol; 2008 Feb; 99(2):473-83. PubMed ID: 18057114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common synaptic input, synergies and size principle: Control of spinal motor neurons for movement generation.
    Hug F; Avrillon S; Ibáñez J; Farina D
    J Physiol; 2023 Jan; 601(1):11-20. PubMed ID: 36353890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of common synaptic drive to ankle dorsiflexor motoneurons during walking in patients with spinal cord lesion.
    Hansen NL; Conway BA; Halliday DM; Hansen S; Pyndt HS; Biering-Sørensen F; Nielsen JB
    J Neurophysiol; 2005 Aug; 94(2):934-42. PubMed ID: 15800077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle weakness, paralysis, and atrophy after human cervical spinal cord injury.
    Thomas CK; Zaidner EY; Calancie B; Broton JG; Bigland-Ritchie BR
    Exp Neurol; 1997 Dec; 148(2):414-23. PubMed ID: 9417821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behaviour of a surface EMG based measure for motor control: motor unit action potential rate in relation to force and muscle fatigue.
    Kallenberg LA; Hermens HJ
    J Electromyogr Kinesiol; 2008 Oct; 18(5):780-8. PubMed ID: 17466536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bilateral motor unit synchronization of leg muscles during a simple dynamic balance task.
    Boonstra TW; Daffertshofer A; Roerdink M; Flipse I; Groenewoud K; Beek PJ
    Eur J Neurosci; 2009 Feb; 29(3):613-22. PubMed ID: 19175407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The image of motor units architecture in the mechanomyographic signal during the single motor unit contraction: in vivo and simulation study.
    Kaczmarek P; Celichowski J; Drzymała-Celichowska H; Kasiński A
    J Electromyogr Kinesiol; 2009 Aug; 19(4):553-63. PubMed ID: 18455438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.