These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23232245)

  • 21. Effect of multi-wall carbon nanotubes on Cr(VI) reduction by citric acid: Implications for their use in soil remediation.
    Zhang Y; Yang J; Zhong L; Liu L
    Environ Sci Pollut Res Int; 2018 Aug; 25(24):23791-23798. PubMed ID: 29876853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of iminodiacetic acid functionalized multi-walled carbon nanotubes and its application as sorbent for separation and preconcentration of heavy metal ions.
    Wang J; Ma X; Fang G; Pan M; Ye X; Wang S
    J Hazard Mater; 2011 Feb; 186(2-3):1985-92. PubMed ID: 21242030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromium speciation in environmental samples by solid- phase extraction using lewatit ionac SR-7 resin and flame atomic absorption spectrometry.
    Sacmaçi S; Kartal S; Kumsuz S
    J AOAC Int; 2014; 97(6):1719-24. PubMed ID: 25632449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel solid phase extraction procedure on Amberlite XAD-1180 for speciation of Cr(III), Cr(VI) and total chromium in environmental and pharmaceutical samples.
    Narin I; Kars A; Soylak M
    J Hazard Mater; 2008 Jan; 150(2):453-8. PubMed ID: 17555874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel fiber-packed column for on-line preconcentration and speciation analysis of chromium in drinking water with flame atomic absorption spectrometry.
    Monasterio RP; Altamirano JC; Martínez LD; Wuilloud RG
    Talanta; 2009 Feb; 77(4):1290-4. PubMed ID: 19084637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fe-Ni/MWCNTs Nano-Composites for Hexavalent Chromium Reduction in Aqueous Environment.
    Kang Z; Gao H; Ma X; Jia X; Wen D
    Molecules; 2023 May; 28(11):. PubMed ID: 37298888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Speciation of chromium in water samples with cloud point extraction separation and preconcentration and determination by graphite furnace atomic absorption spectrometry.
    Liang P; Sang H
    J Hazard Mater; 2008 Jun; 154(1-3):1115-9. PubMed ID: 18082323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Online Preconcentration Procedure for Chromium Speciation and Determination in Industrial Water Samples Using Flame Atomic Absorption Spectrometry.
    Tiwari S; Sharma N; Saxena R
    Anal Sci; 2016; 32(12):1321-1325. PubMed ID: 27941262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Speciation of chromium by selective separation and preconcentration of Cr(III) on an immobilized nanometer titanium dioxide microcolumn.
    Liang P; Ding Q; Liu Y
    J Sep Sci; 2006 Feb; 29(2):242-7. PubMed ID: 16524098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromium speciation in water using magnetic polyaniline nanoparticles coupled with microsampling injection-flame atomic absorption spectroscopy.
    Çaylak O
    Turk J Chem; 2024; 48(1):21-35. PubMed ID: 38544893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of TiO2/multiwalled carbon nanotube composites and their applications in photocatalytic reduction of Cr(VI) study.
    Tan X; Fang M; Wang X
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5624-31. PubMed ID: 19198280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-line preconcentration using dual mini-columns for the speciation of chromium(III) and chromium(VI) and its application to water samples as studied by inductively coupled plasma-atomic emission spectrometry.
    Sumida T; Ikenoue T; Hamada K; Sabarudin A; Oshima M; Motomizu S
    Talanta; 2005 Dec; 68(2):388-93. PubMed ID: 18970334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flame atomic absorption spectrometry for the determination of trace amount of rhodium after separation and preconcentration onto modified multiwalled carbon nanotubes as a new solid sorbent.
    Ghaseminezhad S; Afzali D; Taher MA
    Talanta; 2009 Nov; 80(1):168-72. PubMed ID: 19782208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a novel, fast, sensitive method for chromium speciation in wastewater based on an organic polymer as solid phase extraction material combined with HPLC-ICP-MS.
    Jia X; Gong D; Xu B; Chi Q; Zhang X
    Talanta; 2016 Jan; 147():155-61. PubMed ID: 26592590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Speciation of Cr(III) and Cr(VI) after column solid phase extraction on Amberlite XAD-2010.
    Bulut VN; Duran C; Tufekci M; Elci L; Soylak M
    J Hazard Mater; 2007 May; 143(1-2):112-7. PubMed ID: 17030420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Speciation of Cr(III) and Cr(VI) in water after preconcentration of its 1,5-diphenylcarbazone complex on amberlite XAD-16 resin and determination by FAAS.
    Tunçeli A; Türker AR
    Talanta; 2002 Jul; 57(6):1199-204. PubMed ID: 18968726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modified mesoporous silica materials for on-line separation and preconcentration of hexavalent chromium using a microcolumn coupled with flame atomic absorption spectrometry.
    Wang Z; Fang DM; Li Q; Zhang LX; Qian R; Zhu Y; Qu HY; Du YP
    Anal Chim Acta; 2012 May; 725():81-6. PubMed ID: 22502615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arsenic sorption and speciation with branch-polyethyleneimine modified carbon nanotubes with detection by atomic fluorescence spectrometry.
    Chen M; Lin Y; Gu C; Wang J
    Talanta; 2013 Jan; 104():53-7. PubMed ID: 23597888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cloud point extraction combined with high-performance liquid chromatography for speciation of chromium(III) and chromium(VI) in environmental sediment samples.
    Wang LL; Wang JQ; Zheng ZX; Xiao P
    J Hazard Mater; 2010 May; 177(1-3):114-8. PubMed ID: 20034735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromium speciation and preconcentration using zirconium(IV) and zirconium(IV) phosphate chemically immobilized onto silica gel surface using a flow system and F AAS.
    Maltez HF; Carasek E
    Talanta; 2005 Jan; 65(2):537-42. PubMed ID: 18969832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.