These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 23232412)

  • 1. Interventional tool tracking using discrete optimization.
    Heibel H; Glocker B; Groher M; Pfister M; Navab N
    IEEE Trans Med Imaging; 2013 Mar; 32(3):544-55. PubMed ID: 23232412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guide-wire tracking during endovascular interventions.
    Baert SA; Viergever MA; Niessen WJ
    IEEE Trans Med Imaging; 2003 Aug; 22(8):965-72. PubMed ID: 12906251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endpoint localization in guide wire tracking during endovascular interventions.
    Baert SA; van Walsum T; Niessen WJ
    Acad Radiol; 2003 Dec; 10(12):1424-32. PubMed ID: 14697010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guide wire reconstruction and visualization in 3DRA using monoplane fluoroscopic imaging.
    van Walsum T; Baert SA; Niessen WJ
    IEEE Trans Med Imaging; 2005 May; 24(5):612-23. PubMed ID: 15889549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory motion compensation by model-based catheter tracking during EP procedures.
    Brost A; Liao R; Strobel N; Hornegger J
    Med Image Anal; 2010 Oct; 14(5):695-706. PubMed ID: 20579931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear intensity-based image registration by Markov random fields and discrete optimization.
    Zikic D; Glocker B; Kutter O; Groher M; Komodakis N; Kamen A; Paragios N; Navab N
    Med Image Anal; 2010 Aug; 14(4):550-62. PubMed ID: 20537936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward multiple catheters detection in fluoroscopic image guided interventions.
    Yatziv L; Chartouni M; Datta S; Sapiro G
    IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):770-81. PubMed ID: 22389155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional guide-wire reconstruction from biplane image sequences for integrated display in 3-D vasculature.
    Baert SA; van de Kraats EB; van Walsum T; Viergever MA; Niessen WJ
    IEEE Trans Med Imaging; 2003 Oct; 22(10):1252-8. PubMed ID: 14552579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning approach for deformable guide-wire tracking in fluoroscopic sequences.
    Pauly O; Heibel H; Navab N
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):343-50. PubMed ID: 20879418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust guidewire tracking under large deformations combining segment-like features (SEGlets).
    Vandini A; Glocker B; Hamady M; Yang GZ
    Med Image Anal; 2017 May; 38():150-164. PubMed ID: 28391062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Markov random field approach for topology-preserving registration: application to object-based tomographic image interpolation.
    Cordero-Grande L; Vegas-Sánchez-Ferrero G; Casaseca-de-la-Higuera P; Alberola-López C
    IEEE Trans Image Process; 2012 Apr; 21(4):2047-61. PubMed ID: 21997265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRF energy minimization and beyond via dual decomposition.
    Komodakis N; Paragios N; Tziritas G
    IEEE Trans Pattern Anal Mach Intell; 2011 Mar; 33(3):531-52. PubMed ID: 20479493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A probabilistic framework based on hidden markov model for fiducial identification in image-guided radiation treatments.
    Mu Z; Fu D; Kuduvalli G
    IEEE Trans Med Imaging; 2008 Sep; 27(9):1288-300. PubMed ID: 18753044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformable medical image registration: setting the state of the art with discrete methods.
    Glocker B; Sotiras A; Komodakis N; Paragios N
    Annu Rev Biomed Eng; 2011 Aug; 13():219-44. PubMed ID: 21568711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dense photometric stereo: a Markov random field approach.
    Wu TP; Tang KL; Tang CK; Wong TT
    IEEE Trans Pattern Anal Mach Intell; 2006 Nov; 28(11):1830-46. PubMed ID: 17063687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast catheter segmentation from echocardiographic sequences based on segmentation from corresponding X-ray fluoroscopy for cardiac catheterization interventions.
    Wu X; Housden J; Ma Y; Razavi B; Rhode K; Rueckert D
    IEEE Trans Med Imaging; 2015 Apr; 34(4):861-76. PubMed ID: 25291790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph-based geometric-iconic guide-wire tracking.
    Honnorat N; Vaillant R; Paragios N
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 1):9-16. PubMed ID: 22003594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Markerless real-time 3-D target region tracking by motion backprojection from projection images.
    Rohlfing T; Denzler J; Grässl C; Russakoff DB; Maurer CR
    IEEE Trans Med Imaging; 2005 Nov; 24(11):1455-68. PubMed ID: 16279082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Markov random field model-based edge-directed image interpolation.
    Li M; Nguyen TQ
    IEEE Trans Image Process; 2008 Jul; 17(7):1121-8. PubMed ID: 18586620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.