These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23232435)

  • 1. A comparative analysis of speed profile models for wrist pointing movements.
    Vaisman L; Dipietro L; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):756-66. PubMed ID: 23232435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparative Analysis of Speed Profile Models for Ankle Pointing Movements: Evidence that Lower and Upper Extremity Discrete Movements are Controlled by a Single Invariant Strategy.
    Michmizos KP; Vaisman L; Krebs HI
    Front Hum Neurosci; 2014; 8():962. PubMed ID: 25505881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke.
    Pila O; Duret C; Laborne FX; Gracies JM; Bayle N; Hutin E
    J Neuroeng Rehabil; 2017 Oct; 14(1):105. PubMed ID: 29029633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cable-based parallel manipulator for rehabilitation of shoulder and elbow movements.
    Nunes WM; Rodrigues LA; Oliveira LP; Ribeiro JF; Carvalho JC; Gonçalves RS
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975503. PubMed ID: 22275699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximal-distal differences in movement smoothness reflect differences in biomechanics.
    Salmond LH; Davidson AD; Charles SK
    J Neurophysiol; 2017 Mar; 117(3):1239-1257. PubMed ID: 28003410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy.
    Squeri V; Masia L; Giannoni P; Sandini G; Morasso P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):312-25. PubMed ID: 23508271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study.
    Masia L; Casadio M; Giannoni P; Sandini G; Morasso P
    J Neuroeng Rehabil; 2009 Dec; 6():44. PubMed ID: 19968873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The leading joint hypothesis for spatial reaching arm motions.
    Ambike S; Schmiedeler JP
    Exp Brain Res; 2013 Feb; 224(4):591-603. PubMed ID: 23229774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing Wrist Movement With Robotic Devices.
    Rose CG; Pezent E; Kann CK; Deshpande AD; O'Malley MK
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1585-1595. PubMed ID: 29994401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wrist and finger force sensor module for use during movements of the upper limb in chronic hemiparetic stroke.
    Miller LC; Ruiz-Torres R; Stienen AH; Dewald JP
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2312-7. PubMed ID: 19567336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interjoint coordination dynamics during reaching in stroke.
    Cirstea MC; Mitnitski AB; Feldman AG; Levin MF
    Exp Brain Res; 2003 Aug; 151(3):289-300. PubMed ID: 12819841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interlimb differences in coordination of rapid wrist/forearm movements.
    Srinivasan GA; Embar T; Sainburg R
    Exp Brain Res; 2020 Mar; 238(3):713-725. PubMed ID: 32060564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and testing of a soft parallel robot based on pneumatic artificial muscles for wrist rehabilitation.
    Wang Y; Xu Q
    Sci Rep; 2021 Jan; 11(1):1273. PubMed ID: 33446771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG-Based Real-Time Linear-Nonlinear Cascade Regression Decoding of Shoulder, Elbow, and Wrist Movements in Able-Bodied Persons and Stroke Survivors.
    Liu J; Ren Y; Xu D; Kang SH; Zhang LQ
    IEEE Trans Biomed Eng; 2020 May; 67(5):1272-1281. PubMed ID: 31425016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic measurement of arm movements after stroke establishes biomarkers of motor recovery.
    Krebs HI; Krams M; Agrafiotis DK; DiBernardo A; Chavez JC; Littman GS; Yang E; Byttebier G; Dipietro L; Rykman A; McArthur K; Hajjar K; Lees KR; Volpe BT
    Stroke; 2014 Jan; 45(1):200-4. PubMed ID: 24335224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal activity in primary motor cortex differs when monkeys perform somatosensory and visually guided wrist movements.
    Liu Y; Denton JM; Nelson RJ
    Exp Brain Res; 2005 Dec; 167(4):571-86. PubMed ID: 16078029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination of multi-joint arm movements in cerebellar ataxia: analysis of hand and angular kinematics.
    Topka H; Konczak J; Dichgans J
    Exp Brain Res; 1998 Apr; 119(4):483-92. PubMed ID: 9588783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximal and distal muscle fatigue differentially affect movement coordination.
    Cowley JC; Gates DH
    PLoS One; 2017; 12(2):e0172835. PubMed ID: 28235005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.