These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23232700)

  • 1. Three dimensional multicellular co-cultures and anti-cancer drug assays in rapid prototyped multilevel microfluidic devices.
    Hwang H; Park J; Shin C; Do Y; Cho YK
    Biomed Microdevices; 2013 Aug; 15(4):627-634. PubMed ID: 23232700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic co-culture system for cancer migratory analysis and anti-metastatic drugs screening.
    Mi S; Du Z; Xu Y; Wu Z; Qian X; Zhang M; Sun W
    Sci Rep; 2016 Oct; 6():35544. PubMed ID: 27762336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A layered cancer-on-a-chip system for anticancer drug screening and disease modeling.
    Flont M; Dybko A; Jastrzębska E
    Analyst; 2023 Oct; 148(21):5486-5495. PubMed ID: 37768020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration.
    Lee JM; Seo HI; Bae JH; Chung BG
    Electrophoresis; 2017 May; 38(9-10):1318-1324. PubMed ID: 28169441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering microscale cellular niches for three-dimensional multicellular co-cultures.
    Huang CP; Lu J; Seon H; Lee AP; Flanagan LA; Kim HY; Putnam AJ; Jeon NL
    Lab Chip; 2009 Jun; 9(12):1740-8. PubMed ID: 19495458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug effects analysis on cells using a high throughput microfluidic chip.
    Gong Z; Zhao H; Zhang T; Nie F; Pathak P; Cui K; Wang Z; Wong S; Que L
    Biomed Microdevices; 2011 Feb; 13(1):215-9. PubMed ID: 20978852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micropassage-embedding composite hydrogel fibers enable quantitative evaluation of cancer cell invasion under 3D coculture conditions.
    Sugimoto M; Kitagawa Y; Yamada M; Yajima Y; Utoh R; Seki M
    Lab Chip; 2018 May; 18(9):1378-1387. PubMed ID: 29658964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform.
    Liu W; Xu J; Li T; Zhao L; Ma C; Shen S; Wang J
    Anal Chem; 2015 Oct; 87(19):9752-60. PubMed ID: 26337449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids.
    Ruppen J; Cortes-Dericks L; Marconi E; Karoubi G; Schmid RA; Peng R; Marti TM; Guenat OT
    Lab Chip; 2014 Mar; 14(6):1198-205. PubMed ID: 24496222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip.
    Lei KF; Wu MH; Hsu CW; Chen YD
    Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial Microfluidic Purification of Floating Cancer Cells for Drug Screening and Three-Dimensional Tumor Models.
    Zhang J; Chintalaramulu N; Vadivelu R; An H; Yuan D; Jin J; Ooi CH; Cock IE; Li W; Nguyen NT
    Anal Chem; 2020 Sep; 92(17):11558-11564. PubMed ID: 32583666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening.
    Chen MC; Gupta M; Cheung KC
    Biomed Microdevices; 2010 Aug; 12(4):647-54. PubMed ID: 20237849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes.
    Nath P; Fung D; Kunde YA; Zeytun A; Branch B; Goddard G
    Lab Chip; 2010 Sep; 10(17):2286-91. PubMed ID: 20593077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic co-cultures with hydrogel-based ligand trap to study paracrine signals giving rise to cancer drug resistance.
    Patel D; Gao Y; Son K; Siltanen C; Neve RM; Ferrara K; Revzin A
    Lab Chip; 2015 Dec; 15(24):4614-24. PubMed ID: 26542093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device.
    Liu T; Lin B; Qin J
    Lab Chip; 2010 Jul; 10(13):1671-7. PubMed ID: 20414488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alginate core-shell beads for simplified three-dimensional tumor spheroid culture and drug screening.
    Yu L; Ni C; Grist SM; Bayly C; Cheung KC
    Biomed Microdevices; 2015 Apr; 17(2):33. PubMed ID: 25681969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer.
    Xu Z; Gao Y; Hao Y; Li E; Wang Y; Zhang J; Wang W; Gao Z; Wang Q
    Biomaterials; 2013 May; 34(16):4109-4117. PubMed ID: 23473962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic system for modelling 3D tumour invasion into surrounding stroma and drug screening.
    Du Z; Mi S; Yi X; Xu Y; Sun W
    Biofabrication; 2018 Jun; 10(3):034102. PubMed ID: 29786602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs.
    Sung JH; Shuler ML
    Lab Chip; 2009 May; 9(10):1385-94. PubMed ID: 19417905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image-based evaluations of distribution and cytotoxicity of Irinotecan (CPT-11) in a multi-compartment micro-cell coculture device.
    Nakayama H; Kimura H; Fujii T; Sakai Y
    J Biosci Bioeng; 2014 Jun; 117(6):756-62. PubMed ID: 24374121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.