These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23232866)

  • 21. Activity-dependent neuronal cell migration induced by electrical stimulation.
    Jeong SH; Jun SB; Song JK; Kim SJ
    Med Biol Eng Comput; 2009 Jan; 47(1):93-9. PubMed ID: 19034544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Building and manipulating neural pathways with microfluidics.
    Berdichevsky Y; Staley KJ; Yarmush ML
    Lab Chip; 2010 Apr; 10(8):999-1004. PubMed ID: 20358106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-photon and two-photon stimulation of neurons in a microfluidic culture system.
    Jang JM; Lee J; Kim H; Jeon NL; Jung W
    Lab Chip; 2016 Apr; 16(9):1684-90. PubMed ID: 27053163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and evaluation of a 3-dimensional microchip device where carbon microelectrodes individually address channels in the separate fluidic layers.
    Hulvey MK; Genes LI; Spence DM; Martin RS
    Analyst; 2007 Dec; 132(12):1246-53. PubMed ID: 18318286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes.
    Vitale F; Summerson SR; Aazhang B; Kemere C; Pasquali M
    ACS Nano; 2015; 9(4):4465-74. PubMed ID: 25803728
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CMOS/microfluidic Lab-on-chip for cells-based diagnostic tools.
    Sawan M; Miled MA; Ghafar-Zadeh E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5334-7. PubMed ID: 21096255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PDMS based multielectrode arrays for superior in-vitro retinal stimulation and recording.
    Biswas S; Sikdar D; Das D; Mahadevappa M; Das S
    Biomed Microdevices; 2017 Aug; 19(4):75. PubMed ID: 28842772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interfacing Neurons with Nanostructured Electrodes Modulates Synaptic Circuit Features.
    Domínguez-Bajo A; Rodilla BL; Calaresu I; Arché-Núñez A; González-Mayorga A; Scaini D; Pérez L; Camarero J; Miranda R; López-Dolado E; González MT; Ballerini L; Serrano MC
    Adv Biosyst; 2020 Sep; 4(9):e2000117. PubMed ID: 32761896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing.
    Sameenoi Y; Mensack MM; Boonsong K; Ewing R; Dungchai W; Chailapakul O; Cropek DM; Henry CS
    Analyst; 2011 Aug; 136(15):3177-84. PubMed ID: 21698305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural stimulation with a carbon nanotube microelectrode array.
    Wang K; Fishman HA; Dai H; Harris JS
    Nano Lett; 2006 Sep; 6(9):2043-8. PubMed ID: 16968023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatiotemporally controlled and multifactor involved assay of neuronal compartment regeneration after chemical injury in an integrated microfluidics.
    Li L; Ren L; Liu W; Wang JC; Wang Y; Tu Q; Xu J; Liu R; Zhang Y; Yuan MS; Li T; Wang J
    Anal Chem; 2012 Aug; 84(15):6444-53. PubMed ID: 22793989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural sensing of electrical activity with stretchable microelectrode arrays.
    Yu Z; Graudejus O; Lacour SP; Wagner S; Morrison B
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4210-3. PubMed ID: 19964344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic electrode array chip for electrical stimulation-mediated axonal regeneration.
    Kim JW; Choi YY; Park SH; Ha JH; Lee HU; Kang T; Sun W; Chung BG
    Lab Chip; 2022 May; 22(11):2122-2130. PubMed ID: 35388823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A retrofitted neural recording system with a novel stimulation IC to monitor early neural responses from a stimulating electrode.
    Nam Y; Brown EA; Ross JD; Blum RA; Wheeler BC; DeWeerth SP
    J Neurosci Methods; 2009 Mar; 178(1):99-102. PubMed ID: 19100770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single cell and neural process experimentation using laterally applied electrical fields between pairs of closely apposed microelectrodes with vertical sidewalls.
    Chang WC; Sretavan DW
    Biosens Bioelectron; 2009 Aug; 24(12):3600-7. PubMed ID: 19535240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. State-dependent representation of stimulus-evoked activity in high-density recordings of neural cultures.
    Nieus T; D'Andrea V; Amin H; Di Marco S; Safaai H; Maccione A; Berdondini L; Panzeri S
    Sci Rep; 2018 Apr; 8(1):5578. PubMed ID: 29615719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes.
    Sun X; Gillis KD
    Anal Chem; 2006 Apr; 78(8):2521-5. PubMed ID: 16615759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Agarose microwell based neuronal micro-circuit arrays on microelectrode arrays for high throughput drug testing.
    Kang G; Lee JH; Lee CS; Nam Y
    Lab Chip; 2009 Nov; 9(22):3236-42. PubMed ID: 19865730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human neuromuscular junction on micro-structured microfluidic devices implemented with a custom micro electrode array (MEA).
    Duc P; Vignes M; Hugon G; Sebban A; Carnac G; Malyshev E; Charlot B; Rage F
    Lab Chip; 2021 Oct; 21(21):4223-4236. PubMed ID: 34559171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical stimulation-induced cell clustering in cultured neural networks.
    Jun SB; Hynd MR; Smith KL; Song JK; Turner JN; Shain W; Kim SJ
    Med Biol Eng Comput; 2007 Nov; 45(11):1015-21. PubMed ID: 17684784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.