These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 23232964)
1. Enhancement of xylitol production in glycerol kinase disrupted Candida tropicalis by co-expression of three genes involved in glycerol metabolic pathway. Ahmad I; Shim WY; Kim JH Bioprocess Biosyst Eng; 2013 Sep; 36(9):1279-84. PubMed ID: 23232964 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Ahmad I; Shim WY; Jeon WY; Yoon BH; Kim JH Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):199-204. PubMed ID: 21969058 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of xylitol productivity and yield using a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis under fully aerobic conditions. Ko BS; Rhee CH; Kim JH Biotechnol Lett; 2006 Aug; 28(15):1159-62. PubMed ID: 16810450 [TBL] [Abstract][Full Text] [Related]
4. Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Ko BS; Kim J; Kim JH Appl Environ Microbiol; 2006 Jun; 72(6):4207-13. PubMed ID: 16751533 [TBL] [Abstract][Full Text] [Related]
5. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Jeon WY; Yoon BH; Ko BS; Shim WY; Kim JH Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):191-8. PubMed ID: 21922311 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis. Ko BS; Kim DM; Yoon BH; Bai S; Lee HY; Kim JH; Kim IC Biotechnol Lett; 2011 Jun; 33(6):1209-13. PubMed ID: 21331586 [TBL] [Abstract][Full Text] [Related]
7. Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate. Jeon WY; Shim WY; Lee SH; Choi JH; Kim JH Bioprocess Biosyst Eng; 2013 Jun; 36(6):809-17. PubMed ID: 23411871 [TBL] [Abstract][Full Text] [Related]
8. Xylitol production from a mutant strain of Candida tropicalis. Jeon YJ; Shin HS; Rogers PL Lett Appl Microbiol; 2011 Jul; 53(1):106-13. PubMed ID: 21554342 [TBL] [Abstract][Full Text] [Related]
9. Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor. Zhang L; Chen Z; Wang J; Shen W; Li Q; Chen X Microb Cell Fact; 2021 May; 20(1):105. PubMed ID: 34034730 [TBL] [Abstract][Full Text] [Related]
10. Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae. Reshamwala SMS; Lali AM Biotechnol Prog; 2020 May; 36(3):e2972. PubMed ID: 31990139 [TBL] [Abstract][Full Text] [Related]
11. Strain improvement of Candida tropicalis for the production of xylitol: biochemical and physiological characterization of wild-type and mutant strain CT-OMV5. Rao RS; Jyothi CP; Prakasham RS; Rao CS; Sarma PN; Rao LV J Microbiol; 2006 Feb; 44(1):113-20. PubMed ID: 16554726 [TBL] [Abstract][Full Text] [Related]
12. Production of Xylitol from D-Xylose by Overexpression of Xylose Reductase in Osmotolerant Yeast Candida glycerinogenes WL2002-5. Zhang C; Zong H; Zhuge B; Lu X; Fang H; Zhuge J Appl Biochem Biotechnol; 2015 Jul; 176(5):1511-27. PubMed ID: 26018342 [TBL] [Abstract][Full Text] [Related]
13. L-arabinose pathway engineering for arabitol-free xylitol production in Candida tropicalis. Yoon BH; Jeon WY; Shim WY; Kim JH Biotechnol Lett; 2011 Apr; 33(4):747-53. PubMed ID: 21127946 [TBL] [Abstract][Full Text] [Related]
14. Effects of xylitol dehydrogenase (XYL2) on xylose fermentation by engineered Candida glycerinogenes. Zong H; Zhang C; Zhuge B; Lu X; Fang H; Sun J Biotechnol Appl Biochem; 2017 Jul; 64(4):590-599. PubMed ID: 27245615 [TBL] [Abstract][Full Text] [Related]
15. Xylitol dehydrogenase from Candida tropicalis: molecular cloning of the gene and structural analysis of the protein. Lima LH; Pinheiro CG; de Moraes LM; de Freitas SM; Torres FA Appl Microbiol Biotechnol; 2006 Dec; 73(3):631-9. PubMed ID: 16896602 [TBL] [Abstract][Full Text] [Related]
16. A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Guo X; Zhang R; Li Z; Dai D; Li C; Zhou X Bioresour Technol; 2013 Jan; 128():547-52. PubMed ID: 23211479 [TBL] [Abstract][Full Text] [Related]
17. Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. Kwon SG; Park SW; Oh DK J Biosci Bioeng; 2006 Jan; 101(1):13-8. PubMed ID: 16503285 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Misra S; Raghuwanshi S; Saxena RK Carbohydr Polym; 2013 Feb; 92(2):1596-601. PubMed ID: 23399194 [TBL] [Abstract][Full Text] [Related]
19. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. Kim JH; Han KC; Koh YH; Ryu YW; Seo JH J Ind Microbiol Biotechnol; 2002 Jul; 29(1):16-9. PubMed ID: 12080422 [TBL] [Abstract][Full Text] [Related]
20. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Sasaki M; Jojima T; Inui M; Yukawa H Appl Microbiol Biotechnol; 2010 Apr; 86(4):1057-66. PubMed ID: 20012280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]