These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23233120)

  • 1. An organotypic uniaxial strain model using microfluidics.
    Dollé JP; Morrison B; Schloss RS; Yarmush ML
    Lab Chip; 2013 Feb; 13(3):432-42. PubMed ID: 23233120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro uniaxial stretch model for axonal injury.
    Pfister BJ; Weihs TP; Betenbaugh M; Bao G
    Ann Biomed Eng; 2003 May; 31(5):589-98. PubMed ID: 12757202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable microchannel-on-a-chip: A simple model for evaluating the effects of uniaxial strain on neuronal injury.
    Parittotokkaporn S; Dravid A; Raos BJ; Rosset S; Svirskis D; O'Carroll SJ
    J Neurosci Methods; 2021 Oct; 362():109302. PubMed ID: 34343573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury.
    Tang-Schomer MD; Johnson VE; Baas PW; Stewart W; Smith DH
    Exp Neurol; 2012 Jan; 233(1):364-72. PubMed ID: 22079153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model.
    LaPlaca MC; Cullen DK; McLoughlin JJ; Cargill RS
    J Biomech; 2005 May; 38(5):1093-105. PubMed ID: 15797591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-strain-rate brain injury model using submerged acute rat brain tissue slices.
    Sarntinoranont M; Lee SJ; Hong Y; King MA; Subhash G; Kwon J; Moore DF
    J Neurotrauma; 2012 Jan; 29(2):418-29. PubMed ID: 21970544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting changes in cortical electrophysiological function after in vitro traumatic brain injury.
    Kang WH; Morrison B
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1033-44. PubMed ID: 25628144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics and multielectrode array-compatible organotypic slice culture method.
    Berdichevsky Y; Sabolek H; Levine JB; Staley KJ; Yarmush ML
    J Neurosci Methods; 2009 Mar; 178(1):59-64. PubMed ID: 19100768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain-Rate Dependency of Axonal Tolerance for Uniaxial Stretching.
    Nakadate H; Kurtoglu E; Furukawa H; Oikawa S; Aomura S; Kakuta A; Matsui Y
    Stapp Car Crash J; 2017 Nov; 61():53-65. PubMed ID: 29394435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modeling of axonal microtubule bundles under tension.
    Peter SJ; Mofrad MR
    Biophys J; 2012 Feb; 102(4):749-57. PubMed ID: 22385845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods to induce primary and secondary traumatic damage in organotypic hippocampal slice cultures.
    Adamchik Y; Frantseva MV; Weisspapir M; Carlen PL; Perez Velazquez JL
    Brain Res Brain Res Protoc; 2000 Apr; 5(2):153-8. PubMed ID: 10775835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures.
    Morrison B; Cater HL; Benham CD; Sundstrom LE
    J Neurosci Methods; 2006 Jan; 150(2):192-201. PubMed ID: 16098599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling neural injury in organotypic cultures by application of inertia-driven shear strain.
    Bottlang M; Sommers MB; Lusardi TA; Miesch JJ; Simon RP; Xiong ZG
    J Neurotrauma; 2007 Jun; 24(6):1068-77. PubMed ID: 17600521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new model of traumatic axonal injury to determine the effects of strain and displacement rates.
    Singh A; Lu Y; Chen C; Kallakuri S; Cavanaugh JM
    Stapp Car Crash J; 2006 Nov; 50():601-23. PubMed ID: 17311179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Precise, Controllable
    Li Y; Li C; Gan C; Zhao K; Chen J; Song J; Lei T
    Front Neurosci; 2019; 13():1063. PubMed ID: 31680808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration.
    Tang-Schomer MD; Patel AR; Baas PW; Smith DH
    FASEB J; 2010 May; 24(5):1401-10. PubMed ID: 20019243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular reactivity to mechanical axonal injury in an organotypic in vitro model of neurotrauma.
    Sieg F; Wahle P; Pape HC
    J Neurotrauma; 1999 Dec; 16(12):1197-213. PubMed ID: 10619198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mild axonal stretch injury in vitro induces a progressive series of neurofilament alterations ultimately leading to delayed axotomy.
    Chung RS; Staal JA; McCormack GH; Dickson TC; Cozens MA; Chuckowree JA; Quilty MC; Vickers JC
    J Neurotrauma; 2005 Oct; 22(10):1081-91. PubMed ID: 16238485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical mechanism and indicator of diffuse axonal injury under blast-type acceleration.
    Du Z; Wang P; Luo P; Fei Z; Zhuang Z; Liu Z
    J Biomech; 2023 Jul; 156():111674. PubMed ID: 37300977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors and voltage-dependent calcium channels.
    Cater HL; Gitterman D; Davis SM; Benham CD; Morrison B; Sundstrom LE
    J Neurochem; 2007 Apr; 101(2):434-47. PubMed ID: 17250683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.