These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2323323)

  • 1. Influence of altered phospholipid composition of the membrane outer layer on red blood cell aggregation: relation to shape changes and glycocalyx structure.
    Othmane A; Bitbol M; Snabre P; Mills P
    Eur Biophys J; 1990; 18(2):93-9. PubMed ID: 2323323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reorientation rates and asymmetry of distribution of lysophospholipids between the inner and outer leaflet of the erythrocyte membrane.
    Bergmann WL; Dressler V; Haest CW; Deuticke B
    Biochim Biophys Acta; 1984 May; 772(3):328-36. PubMed ID: 6722150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cell shape, membrane deformability and phospholipid organization on phosphate-calcium-induced fusion of erythrocytes.
    Farooqui SM; Wali RK; Baker RF; Kalra VK
    Biochim Biophys Acta; 1987 Nov; 904(2):239-50. PubMed ID: 3663671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermembrane lipid transfer during Trypanosoma cruzi-induced erythrocyte membrane destabilization.
    Luján HD; Bronia DH
    Parasitology; 1994 Apr; 108 ( Pt 3)():323-34. PubMed ID: 8022658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes.
    Seigneuret M; Devaux PF
    Proc Natl Acad Sci U S A; 1984 Jun; 81(12):3751-5. PubMed ID: 6587389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship of phospholipid distribution to shape change in Ca(2+)-crenated and recovered human erythrocytes.
    Lin S; Yang E; Huestis WH
    Biochemistry; 1994 Jun; 33(23):7337-44. PubMed ID: 8003498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape response of human erythrocytes to altered cell pH.
    Gedde MM; Yang E; Huestis WH
    Blood; 1995 Aug; 86(4):1595-9. PubMed ID: 7632969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilizing factors of phospholipid asymmetry in the erythrocyte membrane.
    Dressler V; Haest CW; Plasa G; Deuticke B; Erusalimsky JD
    Biochim Biophys Acta; 1984 Aug; 775(2):189-96. PubMed ID: 6466667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bilayer balance and regulation of red cell shape changes.
    Mohandas N; Greenquist AC; Shohet SB
    J Supramol Struct; 1978; 9(3):453-8. PubMed ID: 748684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Unrecognized Function of Cholesterol: Regulating the Mechanism Controlling Membrane Phospholipid Asymmetry.
    Arashiki N; Saito M; Koshino I; Kamata K; Hale J; Mohandas N; Manno S; Takakuwa Y
    Biochemistry; 2016 Jun; 55(25):3504-3513. PubMed ID: 27267274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid monolayer expansion by calcium-chlorotetracycline at the air/water interface and, as inferred from cell shape changes, in the human erythrocyte membrane.
    Riquelme G; Jaimovich E; Lingsch C; Behn C
    Biochim Biophys Acta; 1982 Jul; 689(2):219-29. PubMed ID: 7115708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron microscopic study of the calcium phosphate-induced aggregation and membrane destabilization of cytoskeleton-free erythrocyte vesicles.
    Fassel TA; Hui SW; Leonards K; Ohki S
    Biochim Biophys Acta; 1988 Aug; 943(2):267-76. PubMed ID: 3401481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid fluidity of the individual hemileaflets of human erythrocyte membranes.
    Schachter D; Abbott RE; Cogan U; Flamm M
    Ann N Y Acad Sci; 1983; 414():19-28. PubMed ID: 6584076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane bilayer balance and erythrocyte shape: a quantitative assessment.
    Ferrell JE; Lee KJ; Huestis WH
    Biochemistry; 1985 Jun; 24(12):2849-57. PubMed ID: 2990533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The recognition of red blood cells by macrophages: role of phosphatidylserine and possible implications of membrane phospholipid asymmetry.
    Schroit AJ; Tanaka Y; Madsen J; Fidler IJ
    Biol Cell; 1984; 51(2):227-38. PubMed ID: 6240306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of the aminophospholipid translocase activity during in vivo and artificial aging of human erythrocytes.
    Herrmann A; Devaux PF
    Biochim Biophys Acta; 1990 Aug; 1027(1):41-6. PubMed ID: 2168752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization and role of calcium in the erythrocyte coat: effects of enzymes and storage.
    Frisch B; Lewis SM
    Br J Haematol; 1978 Dec; 40(4):541-50. PubMed ID: 728371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic behaviour of amphiphilic lipids to penetrate into membrane of intact human erythrocytes and to induce change in the cell shape.
    Fujii T; Tamura A
    Biomed Biochim Acta; 1983; 42(11-12):S81-5. PubMed ID: 6675720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apoptosis and red blood cell echinocytosis: common features.
    Chukhlovin AB
    Scanning Microsc; 1996; 10(3):795-803; discussion 803-4. PubMed ID: 9813640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase C as a measure of transbilayer phosphatidylserine asymmetry.
    Daleke DL; Huestis WH; Newton AC
    Anal Biochem; 1994 Feb; 217(1):33-40. PubMed ID: 8203737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.