These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23233666)

  • 1. Serine arginine splicing factor 3 is involved in enhanced splicing of glucose-6-phosphate dehydrogenase RNA in response to nutrients and hormones in liver.
    Walsh CM; Suchanek AL; Cyphert TJ; Kohan AB; Szeszel-Fedorowicz W; Salati LM
    J Biol Chem; 2013 Jan; 288(4):2816-28. PubMed ID: 23233666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An exonic splicing silencer is involved in the regulated splicing of glucose 6-phosphate dehydrogenase mRNA.
    Szeszel-Fedorowicz W; Talukdar I; Griffith BN; Walsh CM; Salati LM
    J Biol Chem; 2006 Nov; 281(45):34146-58. PubMed ID: 16980303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and evaluation of an adenoviral vector for the liver-specific expression of the serine/arginine-rich splicing factor, SRSF3.
    Suchanek AL; Salati LM
    Plasmid; 2015 Nov; 82():1-9. PubMed ID: 26241824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Starvation actively inhibits splicing of glucose-6-phosphate dehydrogenase mRNA via a bifunctional ESE/ESS element bound by hnRNP K.
    Cyphert TJ; Suchanek AL; Griffith BN; Salati LM
    Biochim Biophys Acta; 2013 Sep; 1829(9):905-15. PubMed ID: 23631859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of the splicing of glucose-6-phosphate dehydrogenase precursor mRNA by polyunsaturated fatty acids.
    Tao H; Szeszel-Fedorowicz W; Amir-Ahmady B; Gibson MA; Stabile LP; Salati LM
    J Biol Chem; 2002 Aug; 277(34):31270-8. PubMed ID: 12072438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the processing of glucose-6-phosphate dehydrogenase mRNA by nutritional status.
    Amir-Ahmady B; Salati LM
    J Biol Chem; 2001 Mar; 276(13):10514-23. PubMed ID: 11124967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyunsaturated fatty acids inhibit the expression of the glucose-6-phosphate dehydrogenase gene in primary rat hepatocytes by a nuclear posttranscriptional mechanism.
    Stabile LP; Klautky SA; Minor SM; Salati LM
    J Lipid Res; 1998 Oct; 39(10):1951-63. PubMed ID: 9788241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes.
    Änkö ML; Müller-McNicoll M; Brandl H; Curk T; Gorup C; Henry I; Ule J; Neugebauer KM
    Genome Biol; 2012; 13(3):R17. PubMed ID: 22436691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of hnRNPs K, L and A2/B1 as candidate proteins involved in the nutritional regulation of mRNA splicing.
    Griffith BN; Walsh CM; Szeszel-Fedorowicz W; Timperman AT; Salati LM
    Biochim Biophys Acta; 2006; 1759(11-12):552-61. PubMed ID: 17095106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downregulation of splicing factor SRSF3 induces p53β, an alternatively spliced isoform of p53 that promotes cellular senescence.
    Tang Y; Horikawa I; Ajiro M; Robles AI; Fujita K; Mondal AM; Stauffer JK; Zheng ZM; Harris CC
    Oncogene; 2013 May; 32(22):2792-8. PubMed ID: 22777358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing factor SRSF3 is crucial for hepatocyte differentiation and metabolic function.
    Sen S; Jumaa H; Webster NJ
    Nat Commun; 2013; 4():1336. PubMed ID: 23299886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress-inducible truncated serine/arginine-rich splicing factor 3 regulates interleukin-8 production in human colon cancer cells.
    Kano S; Nishida K; Kurebe H; Nishiyama C; Kita K; Akaike Y; Kajita K; Kurokawa K; Masuda K; Kuwano Y; Tanahashi T; Rokutan K
    Am J Physiol Cell Physiol; 2014 Feb; 306(3):C250-62. PubMed ID: 24284797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of SRSF4 to a novel enhancer modulates splicing of exon 6 of Fas pre-mRNA.
    Jang HN; Liu Y; Choi N; Oh J; Ha J; Zheng X; Shen H
    Biochem Biophys Res Commun; 2018 Nov; 506(3):703-708. PubMed ID: 30376989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serine/Arginine-Rich Splicing Factor 3 Modulates the Alternative Splicing of Cytoplasmic Polyadenylation Element Binding Protein 2.
    DeLigio JT; Stevens SC; Nazario-Muñoz GS; MacKnight HP; Doe KK; Chalfant CE; Park MA
    Mol Cancer Res; 2019 Sep; 17(9):1920-1930. PubMed ID: 31138601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of serine/arginine-rich splicing factor 3 in hepatocytes predisposes to hepatocellular carcinoma in mice.
    Sen S; Langiewicz M; Jumaa H; Webster NJ
    Hepatology; 2015 Jan; 61(1):171-83. PubMed ID: 25132062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SRSF5 functions as a novel oncogenic splicing factor and is upregulated by oncogene SRSF3 in oral squamous cell carcinoma.
    Yang S; Jia R; Bian Z
    Biochim Biophys Acta Mol Cell Res; 2018 Sep; 1865(9):1161-1172. PubMed ID: 29857020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Splicing factor SRSF3 represses translation of p21
    Kim J; Park RY; Kee Y; Jeong S; Ohn T
    Cell Death Dis; 2022 Nov; 13(11):933. PubMed ID: 36344491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Phosphorylations of SR Protein SRSF3 and Its Binding to m
    Tatsuno T; Ishigaki Y
    Cells; 2022 Apr; 11(9):. PubMed ID: 35563766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of SRSF3 in Cardiomyocytes Leads to Decapping of Contraction-Related mRNAs and Severe Systolic Dysfunction.
    Ortiz-Sánchez P; Villalba-Orero M; López-Olañeta MM; Larrasa-Alonso J; Sánchez-Cabo F; Martí-Gómez C; Camafeita E; Gómez-Salinero JM; Ramos-Hernández L; Nielsen PJ; Vázquez J; Müller-McNicoll M; García-Pavía P; Lara-Pezzi E
    Circ Res; 2019 Jul; 125(2):170-183. PubMed ID: 31145021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SRSF3 promotes pluripotency through
    Ratnadiwakara M; Archer SK; Dent CI; Ruiz De Los Mozos I; Beilharz TH; Knaupp AS; Nefzger CM; Polo JM; Anko ML
    Elife; 2018 May; 7():. PubMed ID: 29741478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.