These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 23233874)
1. Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes. Reyes-Prieto A; Moustafa A Sci Rep; 2012; 2():955. PubMed ID: 23233874 [TBL] [Abstract][Full Text] [Related]
2. Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Tyra HM; Linka M; Weber AP; Bhattacharya D Genome Biol; 2007; 8(10):R212. PubMed ID: 17919328 [TBL] [Abstract][Full Text] [Related]
3. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943 [TBL] [Abstract][Full Text] [Related]
4. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Martin W; Rujan T; Richly E; Hansen A; Cornelsen S; Lins T; Leister D; Stoebe B; Hasegawa M; Penny D Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12246-51. PubMed ID: 12218172 [TBL] [Abstract][Full Text] [Related]
5. A Non-photosynthetic Diatom Reveals Early Steps of Reductive Evolution in Plastids. Kamikawa R; Moog D; Zauner S; Tanifuji G; Ishida KI; Miyashita H; Mayama S; Hashimoto T; Maier UG; Archibald JM; Inagaki Y Mol Biol Evol; 2017 Sep; 34(9):2355-2366. PubMed ID: 28549159 [TBL] [Abstract][Full Text] [Related]
6. Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes. Maruyama S; Misawa K; Iseki M; Watanabe M; Nozaki H BMC Evol Biol; 2008 May; 8():151. PubMed ID: 18485228 [TBL] [Abstract][Full Text] [Related]
7. Evidence of a chimeric genome in the cyanobacterial ancestor of plastids. Gross J; Meurer J; Bhattacharya D BMC Evol Biol; 2008 Apr; 8():117. PubMed ID: 18433492 [TBL] [Abstract][Full Text] [Related]
8. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Suzuki K; Miyagishima SY Mol Biol Evol; 2010 Mar; 27(3):581-90. PubMed ID: 19910386 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of nucleus-encoded plastid-targeting proteins in Rafflesia cantleyi against photosynthetic and non-photosynthetic representatives reveals orthologous systems with potentially divergent functions. Ng SM; Lee XW; Mat-Isa MN; Aizat-Juhari MA; Adam JH; Mohamed R; Wan KL; Firdaus-Raih M Sci Rep; 2018 Nov; 8(1):17258. PubMed ID: 30467394 [TBL] [Abstract][Full Text] [Related]
10. Nucleus-encoded genes for plastid-targeted proteins in Helicosporidium: functional diversity of a cryptic plastid in a parasitic alga. de Koning AP; Keeling PJ Eukaryot Cell; 2004 Oct; 3(5):1198-205. PubMed ID: 15470248 [TBL] [Abstract][Full Text] [Related]
11. An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids. Ponce-Toledo RI; Deschamps P; López-García P; Zivanovic Y; Benzerara K; Moreira D Curr Biol; 2017 Feb; 27(3):386-391. PubMed ID: 28132810 [TBL] [Abstract][Full Text] [Related]
12. Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Dagan T; Roettger M; Stucken K; Landan G; Koch R; Major P; Gould SB; Goremykin VV; Rippka R; Tandeau de Marsac N; Gugger M; Lockhart PJ; Allen JF; Brune I; Maus I; Pühler A; Martin WF Genome Biol Evol; 2013; 5(1):31-44. PubMed ID: 23221676 [TBL] [Abstract][Full Text] [Related]
14. Genes Sufficient for Synthesizing Peptidoglycan are Retained in Gymnosperm Genomes, and MurE from Larix gmelinii can Rescue the Albino Phenotype of Arabidopsis MurE Mutation. Lin X; Li N; Kudo H; Zhang Z; Li J; Wang L; Zhang W; Takechi K; Takano H Plant Cell Physiol; 2017 Mar; 58(3):587-597. PubMed ID: 28158764 [TBL] [Abstract][Full Text] [Related]
15. Horizontal and endosymbiotic gene transfer in early plastid evolution. Ponce-Toledo RI; López-García P; Moreira D New Phytol; 2019 Oct; 224(2):618-624. PubMed ID: 31135958 [TBL] [Abstract][Full Text] [Related]
16. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Oborník M; Green BR Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570 [TBL] [Abstract][Full Text] [Related]
17. Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis. Colleoni C; Linka M; Deschamps P; Handford MG; Dupree P; Weber AP; Ball SG Mol Biol Evol; 2010 Dec; 27(12):2691-701. PubMed ID: 20576760 [TBL] [Abstract][Full Text] [Related]
18. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Hadariová L; Vesteg M; Hampl V; Krajčovič J Curr Genet; 2018 Apr; 64(2):365-387. PubMed ID: 29026976 [TBL] [Abstract][Full Text] [Related]
19. Compositional biases among synonymous substitutions cause conflict between gene and protein trees for plastid origins. Li B; Lopes JS; Foster PG; Embley TM; Cox CJ Mol Biol Evol; 2014 Jul; 31(7):1697-709. PubMed ID: 24795089 [TBL] [Abstract][Full Text] [Related]
20. Assessing the bacterial contribution to the plastid proteome. Qiu H; Price DC; Weber AP; Facchinelli F; Yoon HS; Bhattacharya D Trends Plant Sci; 2013 Dec; 18(12):680-7. PubMed ID: 24139901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]