BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23233876)

  • 21. Metallofullerenol Inhibits Cellular Iron Uptake by Inducing Transferrin Tetramerization.
    Li J; Xing X; Sun B; Zhao Y; Wu Z
    Chem Asian J; 2017 Oct; 12(20):2646-2651. PubMed ID: 28815927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photo-triggered gadofullerene: enhanced cancer therapy by combining tumor vascular disruption and stimulation of anti-tumor immune responses.
    Guan M; Zhou Y; Liu S; Chen D; Ge J; Deng R; Li X; Yu T; Xu H; Sun D; Zhao J; Zou T; Wang C; Shu C
    Biomaterials; 2019 Aug; 213():119218. PubMed ID: 31136911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyhydroxylated metallofullerenols stimulate IL-1β secretion of macrophage through TLRs/MyD88/NF-κB pathway and NLRP₃ inflammasome activation.
    Chen Z; Liu Y; Sun B; Li H; Dong J; Zhang L; Wang L; Wang P; Zhao Y; Chen C
    Small; 2014 Jun; 10(12):2362-72. PubMed ID: 24619705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tungsten Oxide Nanodots Exhibit Mild Interactions with WW and SH3 Modular Protein Domains.
    Song W; Jing Z; Meng L; Zhou R
    ACS Omega; 2020 May; 5(19):11005-11012. PubMed ID: 32455221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of a novel protein-binding module--the WW domain.
    Sudol M; Chen HI; Bougeret C; Einbond A; Bork P
    FEBS Lett; 1995 Aug; 369(1):67-71. PubMed ID: 7641887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor.
    Liu Y; Chen C; Qian P; Lu X; Sun B; Zhang X; Wang L; Gao X; Li H; Chen Z; Tang J; Zhang W; Dong J; Bai R; Lobie PE; Wu Q; Liu S; Zhang H; Zhao F; Wicha MS; Zhu T; Zhao Y
    Nat Commun; 2015 Jan; 6():5988. PubMed ID: 25612916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the WW domain of human yes-associated protein and its polyproline-containing ligands.
    Chen HI; Einbond A; Kwak SJ; Linn H; Koepf E; Peterson S; Kelly JW; Sudol M
    J Biol Chem; 1997 Jul; 272(27):17070-7. PubMed ID: 9202023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binding preference of carbon nanotube over proline-rich motif ligand on SH3-domain: a comparison with different force fields.
    Shi B; Zuo G; Xiu P; Zhou R
    J Phys Chem B; 2013 Apr; 117(13):3541-7. PubMed ID: 23477344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impacts of fullerene derivatives on regulating the structure and assembly of collagen molecules.
    Yin X; Zhao L; Kang SG; Pan J; Song Y; Zhang M; Xing G; Wang F; Li J; Zhou R; Zhao Y
    Nanoscale; 2013 Aug; 5(16):7341-8. PubMed ID: 23820497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modular mimicry and engagement of the Hippo pathway by Marburg virus VP40: Implications for filovirus biology and budding.
    Han Z; Dash S; Sagum CA; Ruthel G; Jaladanki CK; Berry CT; Schwoerer MP; Harty NM; Freedman BD; Bedford MT; Fan H; Sidhu SS; Sudol M; Shtanko O; Harty RN
    PLoS Pathog; 2020 Jan; 16(1):e1008231. PubMed ID: 31905227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A map of WW domain family interactions.
    Hu H; Columbus J; Zhang Y; Wu D; Lian L; Yang S; Goodwin J; Luczak C; Carter M; Chen L; James M; Davis R; Sudol M; Rodwell J; Herrero JJ
    Proteomics; 2004 Mar; 4(3):643-55. PubMed ID: 14997488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structures of YAP protein domains reveal promising targets for development of new cancer drugs.
    Sudol M; Shields DC; Farooq A
    Semin Cell Dev Biol; 2012 Sep; 23(7):827-33. PubMed ID: 22609812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of type I and type II inhibitors of c-Yes kinase using in silico and experimental techniques.
    Ramakrishnan C; Mary Thangakani A; Velmurugan D; Anantha Krishnan D; Sekijima M; Akiyama Y; Gromiha MM
    J Biomol Struct Dyn; 2018 May; 36(6):1566-1576. PubMed ID: 28589758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide analysis of the WW domain-containing protein genes in silkworm and their expansion in eukaryotes.
    Meng G; Dai F; Tong X; Li N; Ding X; Song J; Lu C
    Mol Genet Genomics; 2015 Jun; 290(3):807-24. PubMed ID: 25424044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural characterization of a new binding motif and a novel binding mode in group 2 WW domains.
    Ramirez-Espain X; Ruiz L; Martin-Malpartida P; Oschkinat H; Macias MJ
    J Mol Biol; 2007 Nov; 373(5):1255-68. PubMed ID: 17915251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological characterizations of [Gd@C82(OH)22]n nanoparticles as fullerene derivatives for cancer therapy.
    Meng J; Liang X; Chen X; Zhao Y
    Integr Biol (Camb); 2013 Jan; 5(1):43-7. PubMed ID: 22961501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large scale molecular simulations of nanotoxicity.
    Jimenez-Cruz CA; Kang SG; Zhou R
    Wiley Interdiscip Rev Syst Biol Med; 2014; 6(4):329-43. PubMed ID: 24894909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biophysical studies and modelling indicate the binding preference of TAZ WW domain for LATS1 PPxY motif.
    Verma A; Lin F; Tan YC; Hidayat MN; Jobichen C; Fan H; Sivaraman J
    Biochem Biophys Res Commun; 2018 Jul; 502(3):307-312. PubMed ID: 29787761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide.
    Macias MJ; Hyvönen M; Baraldi E; Schultz J; Sudol M; Saraste M; Oschkinat H
    Nature; 1996 Aug; 382(6592):646-9. PubMed ID: 8757138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Profiling the molecular mechanism of fullerene cytotoxicity on tumor cells by RNA-seq.
    Lucafò M; Gerdol M; Pallavicini A; Pacor S; Zorzet S; Da Ros T; Prato M; Sava G
    Toxicology; 2013 Dec; 314(1):183-92. PubMed ID: 24125657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.