These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23233879)

  • 21. In Situ Radiographic Investigation of (De)Lithiation Mechanisms in a Tin-Electrode Lithium-Ion Battery.
    Sun F; Markötter H; Zhou D; Alrwashdeh SS; Hilger A; Kardjilov N; Manke I; Banhart J
    ChemSusChem; 2016 May; 9(9):946-50. PubMed ID: 27076373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioderived Molecular Electrodes for Next-Generation Energy-Storage Materials.
    Miroshnikov M; Mahankali K; Thangavel NK; Satapathy S; Arava LMR; Ajayan PM; John G
    ChemSusChem; 2020 May; 13(9):2186-2204. PubMed ID: 32100420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards the 4 V-class n-type organic lithium-ion positive electrode materials: the case of conjugated triflimides and cyanamides.
    Guo X; Apostol P; Zhou X; Wang J; Lin X; Rambabu D; Du M; Er S; Vlad A
    Energy Environ Sci; 2024 Jan; 17(1):173-182. PubMed ID: 38173560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conjugated sulfonamides as a class of organic lithium-ion positive electrodes.
    Wang J; Lakraychi AE; Liu X; Sieuw L; Morari C; Poizot P; Vlad A
    Nat Mater; 2021 May; 20(5):665-673. PubMed ID: 33318677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Covalent organic framework with high capacity for the lithium ion battery anode: insight into intercalation of Li from first-principles calculations.
    Fang L; Cao X; Cao Z
    J Phys Condens Matter; 2019 May; 31(20):205502. PubMed ID: 30780142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage.
    Xu F; Jin S; Zhong H; Wu D; Yang X; Chen X; Wei H; Fu R; Jiang D
    Sci Rep; 2015 Feb; 5():8225. PubMed ID: 25650133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organic Carbonyl Compounds for Sodium-Ion Batteries: Recent Progress and Future Perspectives.
    Wang HG; Zhang XB
    Chemistry; 2018 Dec; 24(69):18235-18245. PubMed ID: 30007002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbonyl Bridge-Based p-π Conjugated Polymers as High-Performance Electrodes of Organic Lithium-Ion Batteries.
    Zu Y; Xu Y; Ma L; Kang Q; Yao H; Hou J
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18457-18464. PubMed ID: 32212633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage.
    Liu T; Kavian R; Chen Z; Cruz SS; Noda S; Lee SW
    Nanoscale; 2016 Feb; 8(6):3671-7. PubMed ID: 26809548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Progress and Prospect of Tunable Organic Molecules for Organic Lithium-Ion Batteries.
    Xu D; Liang M; Qi S; Sun W; Lv LP; Du FH; Wang B; Chen S; Wang Y; Yu Y
    ACS Nano; 2021 Jan; 15(1):47-80. PubMed ID: 33382596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes.
    Wu M; Sabisch JE; Song X; Minor AM; Battaglia VS; Liu G
    Nano Lett; 2013; 13(11):5397-402. PubMed ID: 24079331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modified Viologen- and Carbonylpyridinium-Based Electrodes for Organic Batteries.
    He X; Chen L; Baumgartner T
    ACS Appl Mater Interfaces; 2023 Aug; ():. PubMed ID: 37584306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Few-Layered Fluorinated Triazine-Based Covalent Organic Nanosheets for High-Performance Alkali Organic Batteries.
    Zhang H; Sun W; Chen X; Wang Y
    ACS Nano; 2019 Dec; 13(12):14252-14261. PubMed ID: 31794178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity.
    Nokami T; Matsuo T; Inatomi Y; Hojo N; Tsukagoshi T; Yoshizawa H; Shimizu A; Kuramoto H; Komae K; Tsuyama H; Yoshida J
    J Am Chem Soc; 2012 Dec; 134(48):19694-700. PubMed ID: 23130634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Architecting hierarchical shell porosity of hollow prussian blue-derived iron oxide for enhanced Li storage.
    Zhao Z; Liu X; Luan C; Liu X; Wang D; Qin T; Sui L; Zhang W
    J Microsc; 2019 Nov; 276(2):53-62. PubMed ID: 31603242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes-A Green and Sustainable Manufacturing System.
    Li J; Lu Y; Yang T; Ge D; Wood DL; Li Z
    iScience; 2020 May; 23(5):101081. PubMed ID: 32380421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. s-Tetrazines as a New Electrode-Active Material for Secondary Batteries.
    Min DJ; Miomandre F; Audebert P; Kwon JE; Park SY
    ChemSusChem; 2019 Jan; 12(2):503-510. PubMed ID: 30338641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.