BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23233947)

  • 1. [Continuous adaptation of rats to hypobaric hypoxia prevents stressor hyperglycemia and optimizes mitochondrial respiration under acute hypoxia].
    Portnichenko VI; Nosar VI; Sydorenko AM; Portnichenko AH; Man'kovs'ka IM
    Fiziol Zh (1994); 2012; 58(5):56-64. PubMed ID: 23233947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Regulation of oxidative phosphorylation by liver mitochondria receptors after adaptation by rats to periodic normal pressure and acute hypoxia].
    Kurhaliuk NM; Serebrovs'ka TV; Koliesnikova IeE
    Ukr Biokhim Zh (1999); 2002; 74(6):114-9. PubMed ID: 12924024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Carnosine in adaptation to hypobaric hypoxia].
    Korobov VN; Doliba NM; Telegus IaV
    Biokhimiia; 1993 May; 58(5):740-4. PubMed ID: 8338886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Phase changes in energy metabolism during periodic hypoxia].
    Portnichenko VI; Nosar' VI; Portnichenko AG; Drevitskaia TI; Sidorenko AM; Man'kovskaia IN
    Fiziol Zh (1994); 2012; 58(4):3-12. PubMed ID: 22946319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Exogenous L-arginine modulates mitochondrial and microsomal oxidation in acute and intermittent normobaric hypoxia].
    Kurhaliuk NM; Serebrovs'ka TV; Koliesnikova IeE; Aleksiuk LI
    Fiziol Zh (1994); 2002; 48(5):67-73. PubMed ID: 12449619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen dependence of mitochondrial function measured by high-resolution respirometry in long-term hypoxic rats.
    Costa LE; Méndez G; Boveris A
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C852-8. PubMed ID: 9316405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of acute hypoxic hypoxia on rat liver mitochondrial respiration].
    Braĭlovskaia IV; Aleksandrova AE; Slepneva LV
    Vopr Med Khim; 1980; 26(4):435-8. PubMed ID: 7456378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Disruption of energy metabolism in the liver during lung inflammation in rats].
    Semenov VL; Iarosh AM
    Vopr Med Khim; 1991; 37(3):28-30. PubMed ID: 1949678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liver mitochondrial respiratory plasticity and oxygen uptake evoked by cobalt chloride in rats with low and high resistance to extreme hypobaric hypoxia.
    Kurhaluk N; Lukash O; Nosar V; Portnychenko A; Portnichenko V; Wszedybyl-Winklewska M; Winklewski PJ
    Can J Physiol Pharmacol; 2019 May; 97(5):392-399. PubMed ID: 30681909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Molecular mechanisms of adaptation to hypoxia at high altitudes].
    Dávila BR
    Arch Inst Biol Andina; 1971; 4(1):1-14. PubMed ID: 5161930
    [No Abstract]   [Full Text] [Related]  

  • 11. [Effect of K-ATP channel opener-pinacidil on the liver mitochondria function in rats with different resistance to hypoxia during stress].
    Tkachenko HM; Kurhaliuk NM; Vovkanych LS
    Ukr Biokhim Zh (1999); 2004; 76(1):56-64. PubMed ID: 15909418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver.
    Kinnula VL; Hassinen I
    Acta Physiol Scand; 1978 Sep; 104(1):109-16. PubMed ID: 211796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Intermittent hypoxic training with exogenous nitric oxide improves rat liver mitochondrial oxidation and phosphorylation during acute hypoxia].
    Serebrovs'ka TV; Kurgaliuk NM; Nosar VI; Kolesnikova IeE
    Fiziol Zh (1994); 2001; 47(1):85-92. PubMed ID: 11296563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Effects of Intermittent Hypoxia Training on Oxygen-Dependent Processes as a Potential Therapeutic Strategy Tool.
    Kurhaluk N; Lukash O; Kamiński P; Tkaczenko H
    Cell Physiol Biochem; 2024 Jun; 58(3):226-249. PubMed ID: 38857359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Intermittent hypoxic training and L-arginine as corrective agents for myocardial energy supply under acute hypoxia].
    Kurhaliuk NM; Serebrovs'ka TV; Nosar VI; Kolesnikova EE; Moĭbenko OO
    Ukr Biokhim Zh (1999); 2002; 74(1):82-7. PubMed ID: 12199105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of superoxide anion by mitochondria and impairment of their functions during anoxia and reoxygenation in vitro.
    Du G; Mouithys-Mickalad A; Sluse FE
    Free Radic Biol Med; 1998 Dec; 25(9):1066-74. PubMed ID: 9870560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of intermittent hypoxic training on indices of adaptation to hypoxia in rats during physical exertion].
    Havenauskas BL; Man'kovs'ka IM; Nosar VI; Nazarenko AI; Bratus' LV
    Fiziol Zh (1994); 2004; 50(6):32-42. PubMed ID: 15732757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of altitude stress on mitochondrial function.
    Gold AJ; Johnson TF; Costello LC
    Am J Physiol; 1973 Apr; 224(4):946-9. PubMed ID: 4349178
    [No Abstract]   [Full Text] [Related]  

  • 19. [Myocardium mitochondria functional state during adaptation to intermittent hypoxia and treatment with L-arginine].
    Kurhaliuk NM; Tkachenko HM
    Ukr Biokhim Zh (1999); 2004; 76(3):79-84. PubMed ID: 19621743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Relation between glutamate and adenine nucleotide levels of heart mitochondria during hypoxia].
    Pisarenko OI; Solomatina ES; Studneva IM
    Biokhimiia; 1987 Apr; 52(4):543-9. PubMed ID: 3593788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.